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Hazard Vulnerability Exposure

Seismic Risk
Target of the lecture



Vulnerability

• It is fundamental to understand the vulnerability concept

• The seismic risk, that quantifies the losses, is the convolution of 
vulnerability, hazard and exposure. It is impossible to act on hazard, 
nearly impossible to act on exposure, it is feasible to act on vulnerability. 
Hence, the feasible way to mitigate the seismic risk is to mitigate the 
seismic vulnerabilityseismic vulnerability

• Vulnerability measures how prone a structure is to be damaged when an 
earthquake occurs

• To deal with vulnerability, a mathematical definition is needed 



Pik = P[D≥di | S=sk]

Damage Shaking

Mathematical Definition of Vulnerability

Methods to quantify the vulnerability

� Empirical methods based on post earthquake observations

� Mechanic methods

� Hybrid methods

Methods to quantify the vulnerability

� Damage Probability Matrix (DPM)

� Fragility curves
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Seismic Risk

• Unconditional damage/failure probability

If the probability of having a certain ground shaking severity is also taken 
into account, the unconditional damage/failure probability is computed. 
The probability of having a certain ground shaking severity is taken into 
account through the hazard curve: 

R² = 0.9941
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AFE: Annual frequency of exceedance

AFE=1/Tr with Tr the return period of the 
ground shaking



Unconditional damage/failure probability

In order to compute the seismic risk, the hazard curve must be transformed in 
terms of probability. The assumption usually undertaken is that the events 
follow the Poisson’s distribution, that is the probability distribution of rare 
events without memory (what happens one year is independent from what 
happened in the years before). The occurrence probability “q” of a ground happened in the years before). The occurrence probability “q” of a ground 
shaking with a certain AFE in an observation time window td is:

q = 1- exp (td AFE)

Hence, the seismic risk is computed by solving the integral of structural 
reliability
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Exceedace Fragility curve

Where:

•f and F are the probability density function and the cumulative probability, 
respectively
•E is the parameter that represents the ground motion severity;
•d and c are the random variables that represent the demand and the 
capacity respectively

Exceedace 
probability of ground 
shaking severity “q” 

Fragility curve



Mechanics Based Vulnerability Assessment:

SP-BELA 
(Simplified P ushover - B ased Earthquake L oss A ssessment)



1st step : choice of prototype building
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SP-BELA – Building Capacity

2nd step : definition of random variables that describe the bldg.(i.e.: loads, material 
properties, geometry, etc.)

4th step : simulated building design with reference to the regulation adopted in the year of 
real building design

3rd step : montecarlo generation of buildings’ population



5th step : simplified pushover analysis

Check of relative resistance of beams and columns

Collapse mechanism Deformed shape:
� Assumption of linear deformed 

shape into the elastic range
� Deformed shape consisent with the 

failure mechanism into the inelastic 
range

Resistance

λ 

∆ 
∆y=∆light damage ∆severe damage ∆coll apse 

Once the deformed shape, the limit conditions and the resistance are known ….

 

λ 

∝ (TLSi)-2
∝ (TLSy)-2 

Contribution of infill walls 

∆ 

∆y=∆ light damage ∆severe damage ∆collapse 

Bare frame

Frame with
infill walls



1st step : choice of spectral shape
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SP-BELA – Seismic Demand

2nd step : definition of random variables that describe the spectral shape (i.e. corner 
periods, dynamic amplification, …)

3rd step : montecarlo generation of a population of spectral shapes



Random sample of pushover curves (j=1,n) Random sample of spectral shapes (j=1,n)

∇ agk (k=1,m)

∇ SLi (i=1,3)

From pushover: ∆SLi, TSLi, µSLi From spectral shape: Sdi (agk, TSLi, 

µSLi)

j=1

µSLi)

Sdi > ∆SLi

SI NO

hj=1 hj=0

j=n? j=j+1
NO

SI

Pf  (agk, SLi)= Σ hj/n

i=3?
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k=m ?

SI

END
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CASE 1
Bare framey

x CASE 2
Regular distributed infill walls

SP-BELA – Validation Exercise

x Regular distributed infill walls

y
x

CASE 3 
Non regular distributed infill walls

y
x
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Non seismically designed buildings
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CASE 1
Bare frame

Seismically designed buildings
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CASE 2
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Masonry Buildings
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Precast RC Buildings



Seismic Risk Assessment of Hospitals in Lombardia Distr ict

Seismic risk assessment of a large industrial estate

Applications

DPC Project
Seismic risk assessment of Italian building stock

DPC Project
Priority of intervention on Italian school building s

DPC Project
Seismic risk assessment of transportation network
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