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Fundamentals of Structural Dynamics

1  Course description
Aim of the course is that students develop a “feeling for dynamic problems” and acquire the theoretical
background and the tools to understand and to solve important problems relevant to the linear and, in
part, to the nonlinear dynamic behaviour of structures, especially under seismic excitation.
The course will start with the analysis of single-degree-of-freedom (SDoF) systems by discussing: (i)
Modelling, (ii) equations of motion, (iii) free vibrations with and without damping, (iv) harmonic, pe-
riodic and short excitations, (v) Fourier series, (vi) impacts, (vii) linear and nonlinear time history anal-
ysis, and (viii) elastic and inelastic response spectra.
Afterwards, multi-degree-of-freedom (MDoF) systems will be considered and the following topics will
be discussed: (i) Equation of motion, (ii) free vibrations, (iii) modal analysis, (iv) damping, (v) Rayleigh’s
quotient, and (vi) seismic behaviour through response spectrum method and time history analysis.
To supplement the suggested reading, handouts with class notes and calculation spreadsheets with se-
lected analysis cases to self-training purposes will be distributed.

Lecturer: Dr. Alessandro Dazio, UME School

2  Suggested reading 
[Cho11] Chopra A., “Dynamics of Structures”, Prentice Hall, Fourth Edition, 2011.
[CP03] Clough R., Penzien J., “Dynamics of Structures”, Second Edition (revised), Computer and

Structures Inc., 2003.
[Hum12] Humar J.L., “Dynamics of Structures”. Third Edition. CRC Press, 2012.

3  Software
In the framework of the course the following software will be used by the lecturer to solve selected ex-
amples:

[Map10] Maplesoft: “Maple 14”. User Manual. 2010
[Mic07] Microsoft: “Excel 2007”. User Manual. 2007
[VN12] Visual Numerics: “PV Wave”. User Manual. 2012

As an alternative to [VN12] and [Map10] it is recommended that students make use of the following
software, or a previous version thereof, to deal with coursework:

[Mat12] MathWorks: “MATLAB 2012”. User Manual. 2012
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4  Schedule of classes 
Date Time Topic

Day 1
Fri. April 19

2013

09:00 - 10:30 1. Introduction
2. SDoF systems: Equation of motion and modelling

11:00 - 12:30 3. Free vibrations
14:30 - 16:00 Assignment 1
16:30 - 18:00 Assignment 1

Day 2
Sat. April 20

2013

9:00 - 10:30 4. Harmonic excitation

11:00 - 12:30 5. Transfer functions
14:30 - 16:00 6. Forced vibrations (Part 1)
16:30 - 18:00 6. Forced vibrations (Part 2)

Day 3
Sun. April 21

2013

09:00 - 10:30 7. Seismic excitation (Part 1)
11:00 - 12:30 7. Seismic excitation (Part 2)
14:30 - 16:00 Assignment 2
16:30 - 18:00 Assignment 2

Day 4
Mon. April 22

2013

9:00 - 10:30 8. MDoF systems: Equation of motion
11:00 - 12:30 9. Free vibrations
14:30 - 16:00 10. Damping

11. Forced vibrations
16:30 - 18:00 11. Forced vibrations

Day 5
Tue. April 23

2013

09:00 - 10:30 12. Seismic excitation (Part 1)
11:00 - 12:30 12. Seismic excitation (Part 2)
14:30 - 16:00 Assignment 3
16:30 - 18:00 Assignment 3
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1 Introduction

1.1 Goals of the course

• Presentation of the theoretical basis and of the relevant tools;

• General understanding of phenomena related to structural dy-
namics;

• Focus on earthquake engineering;

• Development of a “Dynamic Feeling”;

• Detection of frequent dynamic problems and application of ap-
propriate solutions.

1.2 Limitations of the course

• Only an introduction to the broadly developed field of structural
dynamics (due to time constraints);

• Only deterministic excitation;

• No soil-dynamics and no dynamic soil-structure interaction will
be treated (this is the topic of another course);

• Numerical methods of structural dynamics are treated only
partially (No FE analysis. This is also the topic of another
course);

• Recommendation of further readings to solve more advanced
problems.
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1.3 Topics of the course

1) Systems with one degree of freedom

- Modelling and equation of motion

- Free vibrations with and without damping

- Harmonic excitation

2) Forced oscillations

- Periodic excitation, Fourier series, short excitation

- Linear and nonlinear time history-analysis

- Elastic and inelastic response spectra

3) Systems with many degree of freedom

- Modelling and equation of motion

- Modal analysis, consideration of damping

- Forced oscillations,

- Seismic response through response spectrum method and
time-history analysis

4) Continuous systems

- Generalised Systems

5) Measures against vibrations

- Criteria, frequency tuning, vibration limitation
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2 Single Degree of Freedom Systems

2.1 Formulation of the equation of motion

2.1.1 Direct formulation

1) Newton's second law (Action principle)

(  = Impulse) (2.1)

The force corresponds to the change of impulse over time. 

(2.2)

Introducing the spring force  and the damping
force  Equation (2.2) becomes:

(2.3)

F td
dI

td
d mu·( ) mu··= = = I

fk t( )– fc t( )– F t( )+ mu·· t( )=

fk t( ) ku t( )=
fc t( ) cu· t( )=

mu·· t( ) cu· t( ) ku t( )+ + F t( )=
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2) D’Alembert principle

(2.4)

The principle is based on the idea of a fictitious inertia force
that is equal to the product of the mass times its acceleration,
and acts in the opposite direction as the acceleration
The mass is at all times in equilibrium under the resultant
force  and the inertia force .

• To derive the equation of motion, the dynamic equilibrium for
each force component is formulated. To this purpose, forces,
and possibly also moments shall be decomposed into their
components according to the coordinate directions.

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

F T+ 0=

F T mu··–=

y x t( ) l us u t( )+ + +=

y·· x·· u··+=

T my··– m x·· u··+( )–= =

F k us u+( )– cu·– mg+
kus– ku– cu·– mg+
ku– cu·–

=
=
=

F T+ 0=

cu·– ku– mx·· mu··–– 0=

mu·· cu· ku+ + mx··–=
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2.1.2 Principle of virtual work

(2.12)

• Virtual displacement = imaginary infinitesimal displacement
• Should best be kinematically permissible, so that unknown reac-

tion forces do not produce work

(2.13)

• Thereby, both inertia forces and damping forces must be consid-
ered

(2.14)

2.1.3 Energy Formulation

• Kinetic energy T (Work, that an external force needs to pro-
vide to move a mass)

• Deformation energy U (is determined from the work that an ex-
ternal force has to provide in order to generate a deformation)

• Potential energy of the external forces V (is determined with
respect to the potential energy at the position of equilibrium)

• Conservation of energy theorem (Conservative systems)

(2.15)

(2.16)

δu

δAi δAa=

fm fc fk+ +( )δu F t( )δu=

E T U V+ + To Uo Vo+ + cons ttan= = =

td
dE 0=
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2.2 Example “Inverted Pendulum”

Direct Formulation 

Spring force: (2.17)

Inertia force: (2.18)

External force: (2.19)

Equilibrium

(2.20)

k

m

O

a

l

Fp

l sin(ϕϕ1)

Fm

l

sin(ϕ1) ~ ϕ1

cos(ϕ1) ~ 1

ϕ1

Fk

a 
co

s(
ϕ 1

)

a sin(ϕ1)

Fk a ϕ1( )sin k a ϕ1 k⋅ ⋅≈⋅ ⋅=

Fm ϕ··1 l m⋅ ⋅=

Fp m g⋅=

Fk a ϕ1( )cos⋅ ⋅ Fm l Fp l ϕ1( )sin⋅ ⋅–⋅+ 0=
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(2.21)

Circular frequency:

(2.22)

The system is stable if:

: (2.23)

Principle of virtual work formulation 

m l2 ϕ··1⋅ ⋅ a2 k m g l⋅ ⋅–⋅( ) ϕ1⋅+ 0=

ω
K1
M1
------- a2 k m g l⋅ ⋅–⋅

m l2⋅
------------------------------------- a2 k⋅

m l2⋅
------------- g

l
---–= = =

ω 0> a2 k⋅ m g l⋅ ⋅>

k

m

O

a

l

ϕϕ1

Fkcos(ϕ1)

Fm
Fpsin(ϕ1)

δϕ1

δuk

δum

sin(ϕ1) ~ ϕ1

cos(ϕ1) ~ 1
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Spring force: (2.24)

Inertia force: (2.25)

External force: (2.26)

Virtual displacement:

, (2.27)

Principle of virtual work:

(2.28)

(2.29)

After cancelling out  the following equation of motion is ob-
tained:

(2.30)

The equation of motion given by Equation (2.30) corresponds to
Equation (2.21).

Fk ϕ1( )cos⋅ a ϕ1 k⋅ ⋅≈

Fm ϕ··1 l m⋅ ⋅=

Fp ϕ1( )sin⋅ m g ϕ1⋅ ⋅≈

δuk δϕ1 a⋅= δum δϕ1 l⋅=

Fk ϕ1( )cos⋅( ) δuk⋅ Fm Fp ϕ1( )sin⋅( )–( ) δum⋅+ 0=

a ϕ1 k⋅ ⋅( ) δϕ1 a⋅ ⋅ ϕ··1 l m⋅ ⋅ m g ϕ1⋅ ⋅–( ) δϕ1 l⋅ ⋅+ 0=

δϕ1

m l2 ϕ··1⋅ ⋅ a2 k m g l⋅ ⋅–⋅( ) ϕ1⋅+ 0=
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Energy Formulation  

Spring: (2.31)

Mass: (2.32)

(2.33)

by means of a series development,  can be
expressed as:

(2.34)

k

m

O

a

l

ϕϕ1

Edef,k

a sin(ϕ1)
vm

Ekin,m

Epot,p

(1-cos(ϕ1)) l
~

0.5 l ϕ1
2

sin(ϕ1) ~ ϕ1

cos(ϕ1) ~ 1

Edef,k
1
2
--- k a ϕ1( )sin⋅[ ]2⋅ ⋅ 1

2
--- k a ϕ1⋅( )2⋅ ⋅= =

Ekin,m
1
2
--- m vm

2⋅ ⋅ 1
2
--- m ϕ· 1 l⋅( )

2
⋅ ⋅= =

Epot,p m g⋅( )– 1 ϕ1( )cos–( ) l⋅ ⋅=

ϕ1( )cos

ϕ1( )cos 1
ϕ1

2

2!
------–

ϕ1
4

4!
------ …– 1–( )k x2k

2k( )!
-------------⋅ …+ + +=
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for small angles  we have:

 and (2.35)

and Equation (2.33) becomes:

(2.36)

Energy conservation:

(2.37)

(2.38)

Derivative of the energy with respect to time:

Derivation rule: (2.39)

(2.40)

After cancelling out the velocity :

(2.41)

The equation of motion given by Equation (2.41) corresponds to
Equations (2.21) and (2.30).

ϕ1

ϕ1( )cos 1
ϕ1

2

2
------–=

ϕ1
2

2
------ 1 ϕ1( )cos–=

Epot,p m g 0.5 l ϕ1
2⋅ ⋅ ⋅ ⋅( )–=

Etot Edef,k Ekin,m Epot,p+ + constant= =

E 1
2
--- m l2⋅( ) ϕ· 1

2
⋅ 1

2
--- k a2⋅ m g l⋅ ⋅–( ) ϕ1

2⋅+ constant= =

td
dE 0= g f•( )' g' f•( ) f'⋅=

m l2⋅( ) ϕ· 1 ϕ··1⋅ ⋅ k a2⋅ m g l⋅ ⋅–( ) ϕ1 ϕ· 1⋅ ⋅+ 0=

ϕ· 1

m l2 ϕ··1⋅ ⋅ a2 k m g l⋅ ⋅–⋅( ) ϕ1⋅+ 0=
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Comparison of the energy maxima

(2.42)

(2.43)

By equating  and  we obtain:

(2.44)

(2.45)

•  is independent of the initial angle 

• the greater the deflection, the greater the maximum velocity.

KE 1
2
--- m ϕ· 1,max l⋅( )

2
⋅ ⋅=

PE 1
2
--- k a ϕ1⋅( )2⋅ ⋅ 1

2
--- g m l ϕ1

2⋅ ⋅ ⋅ ⋅–=

KE PE

ϕ· 1,max
a2 k m g l⋅ ⋅–⋅

m l2⋅
-------------------------------------

� �
� �
� �

ϕ1⋅=

ϕ· 1,max ω ϕ1⋅=

ω ϕ1
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2.3 Modelling

2.3.1 Structures with concentrated mass

(2.46)

Tank:
Mass=1000t

Ground

RC Walls in the
longitudinal direction

Longitu
dinal

dire
ctio

n

Transverse
direction

Frame with rigid beam
F(t)

Bridge in transverse direction
F(t)

k
3EIw

H3
------------=

k 2
12EIs

H3
--------------=

k 2
3EIw

H3
------------=

Water tank

F(t)F(t)

k …=

mu·· ku+ F t( )=
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2.3.2 Structures with distributed mass  

Deformation: (2.47)

External forces:
(2.48)

• Principle of virtual work

(2.49)

(2.50)

 where: (2.51)

and (2.52)

u x t,( ) ψ x( )U t( )=

t x t,( ) mu·· x t,( )–=
f x t,( )

δAi δAa=

δAa t δu⋅( ) xd
0

L

� f δu⋅( ) xd
0

L

�+

mu·· δu⋅( ) xd
0

L

�– f δu⋅( ) xd
0

L

�+

=

=

δAi M δϕ⋅( ) xd
0

L

�=

M EIu''= δϕ δ u''[ ]=
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(2.53)

• Transformations:

and (2.54)

• The virtual displacement is affine to the selected deformation:

and (2.55)

• Using Equations (2.54) and (2.55), the work  produced by the
external forces is:

(2.56)

• Using Equations (2.54) and (2.55) the work  produced by the
internal forces is:

(2.57)

• Equation (2.49) is valid for all virtual displacements, therefore:

(2.58)

(2.59)

δAi EIu'' δ u''[ ]⋅( ) xd
0

L

�=

u'' ψ''U= u·· ψU··=

δu ψδU= δ u''[ ] ψ''δU=

δAa

δAa mψU·· ψδU⋅( ) xd
0

L

�– f ψδU⋅( ) xd
0

L

�+

δU U·· mψ2 xd
0

L

�– fψ xd
0

L

�+

=

=

δAi

δAi EIψ''U ψ''δU⋅( ) xd
0

L

� δU U EI ψ''( )2( ) xd
0

L

�= =

U EI ψ''( )2( ) xd
0

L

� U·· mψ2 xd
0

L

�– fψ xd
0

L

�+=

m*U·· k*U+ F*=
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• Circular frequency

(2.60)

-> Rayleigh-Quotient

• Choosing the deformation figure

- The accuracy of the modelling depends on the assumed
deformation figure;

- The best results are obtained when the deformation figure
fulfills all boundary conditions;

- The boundary conditions are automatically satisfied if the
deformation figure corresponds to the deformed shape due
to an external force;

- A possible external force is the weight of the structure act-
ing in the considered direction.

• Properties of the Rayleigh-Quotient

- The estimated natural frequency is always larger than the
exact one (Minimization of the quotient!);

- Useful results can be obtained even if the assumed defor-
mation figure is not very realistic.

ωn
2 k*

m*
-------

EI ψ''( )2( ) xd
0

L

�

mψ2 xd
0

L

�
-------------------------------------= =

Course “Fundamentals of Structural Dynamics” An-Najah 2013

2 Single Degree of Freedom Systems Page 2-14 

• Example No. 1: Cantilever with distributed mass  

,  (2.61)

(2.62)

ψ 1 πx
2L
-------� �
� �cos–= ψ'' π

2L
-------� �
� � 2 πx

2L
-------� �
� �cos=

m* m 1 πx
2L
-------� �
� �cos–� �

� � 2
xd

0

L
� ψ2 x L=( )M+

1
2
---m

3πx 8 πx
2L
-------� �
� �Lsin– 2 πx

2L
-------� �
� � πx

2L
-------� �
� �Lsincos+

π
----------------------------------------------------------------------------------------------------

� �
� �
� �
� �
� �

0

L

M+

3π 8–( )
2π

--------------------mL M+ 0.23mL M+

=

=

= =
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(2.63)

(2.64)

• Check of the boundary conditions of the deformation figure  

 ? -> :  OK!

 ? -> :  OK!

 ? -> :  OK!

k* EI π
2L
-------� �
� � 4 πx

2L
-------� �
� �cos� �

� � 2
xd

0

L

�

EI π
2L
-------� �
� � 4 1

2
---

πx 2 πx
2L
-------� �
� � πx

2L
-------� �
� �Lsincos+

π
---------------------------------------------------------------

� �
� �
� �
� �
� �

0

L

⋅

π4

32
------ EI

L3
------⋅ 3.04 EI

L3
------⋅ 3EI

L3
---------≈

=

=

= =

ω 3EI
0.23mL M+( )L3

------------------------------------------=

ψ 0( ) 0= ψ x( ) 1 πx
2L
-------� �
� �cos–= ψ 0( ) 0=

ψ' 0( ) 0= ψ' x( ) π
2L
------- πx

2L
-------� �
� �sin= ψ' 0( ) 0=

ψ'' L( ) 0= ψ'' x( ) π
2L
-------� �
� � 2 πx

2L
-------� �
� �cos= ψ'' L( ) 0=
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• Example No. 2: Cantilever with distributed mass  

, (2.65)

• Calculation of the mass 

(2.66)

(2.67)

(2.68)

(2.69)

ψ 1 πx
2L
-------� �
� �cos–= ψ'' π

2L
-------� �
� � 2 πx

2L
-------� �
� �cos=

m*

m* m 1 πx
2L
-------� �
� �cos–� �

� � 2
xd

0

L
� ψ2 x L

2
---=� �

� �M1 ψ2 x L=( )M2+ +=

m* 3π 8–( )
2π

--------------------mL 1 π
4
---� �
� �cos–� �

� � 2
M1⋅ 12 M2⋅+ +=

m* 3π 8–( )
2π

--------------------mL 3 2 2–
2

-------------------� �
� � M1⋅ M2+ +=

m* 0.23mL 0.086M1 M2+ +=
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• Calculation of the stiffness 

(2.70)

(2.71)

• Calculation of the circular frequency 

(2.72)

Special case:  and 

(2.73)

The exact first natural circular frequency of a two-mass oscillator
with constant stiffness and mass is:

(2.74)

As a numerical example, the first natural frequency of a
 tall steel shape HEB360 (bending about the strong ax-

is) featuring two masses  is calculated.

k*

k* EI π
2L
-------� �
� � 4 πx

2L
-------� �
� �cos� �

� � 2
xd

0

L

�=

k* π4

32
------ EI

L3
------⋅ 3.04 EI

L3
------⋅ 3EI

L3
---------≈= =

ω

ω 3.04EI
0.23mL 0.086M1 M2+ +( )L3

-------------------------------------------------------------------------=

m 0= M1 M2 M= =

ω 3.04EI
1.086M( )L3

------------------------------ 1.673 EI
ML3
-----------= =

ω 3.007EI
1.102M( )L3

------------------------------ 1.652 EI
ML3
-----------= =

L 10m=
M1 M2 10t= =
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(2.75)

(2.76)

By means of Equation (2.73) we obtain:

(2.77)

(2.78)

From Equation (2.74):

(2.79)

The first natural frequency of such a dynamic system can be cal-
culated using a finite element program (e.g. SAP 2000), and it is
equal to:

, (2.80)

Equations (2.78), (2.79) and (2.80) are in very good accordance.
The representation of the first mode shape and corresponding
natural frequency obtained by means of a finite element program
is shown in the next figure. 

EI 200000 431.9 6×10⋅ 8.638 13×10 Nmm2= =

EI 8.638 4×10 kNm2=

ω 1.673 EI
ML3
----------- 1.673 8.638 4×10

10 10⋅ 3
------------------------- 4.9170= = =

f 1
2π
------ ω⋅ 4.9170

2π
---------------- 0.783Hz= = =

f 1.652
2π

------------- EI
ML3
----------- 1.652

2π
------------- 8.638 4×10

10 10⋅ 3
------------------------- 0.773Hz= = =

T 1.2946s= f 0.772Hz=
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SAP2000 v8 - File:HEB_360 - Mode 1  Period 1.2946 seconds   - KN-m Units

HEB 360

M = 10t

M = 10t
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2.3.3 Damping

• Types of damping 

• Typical values of damping in structures  

Material Damping ζ

Reinforced concrete (uncraked)
Reinforced concrete (craked
Reinforced concrete (PT)
Reinforced concrete (partially PT)
Composite components
Steel

0.007 - 0.010
0.010 - 0.040
0.004 - 0.007
0.008 - 0.012
0.002 - 0.003
0.001 - 0.002

Table C.1 from [Bac+97]

Damping

Internal External

Material Contact areas 
within the structure

Hysteretic
(Viscous,
Friction,

Yielding)

Relative 
movements

between parts of 
the structure 

(Bearings, Joints, 
etc.)

External contact 
(Non-structural

elements, Energy 
radiation in the 
ground, etc.)



Course “Fundamentals of Structural Dynamics” An-Najah 2013

2 Single Degree of Freedom Systems Page 2-21 

• Bearings  

Source: A. Marioni: “Innovative Anti-seismic Devices for Bridges”. 
[SIA03]
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• Dissipators 

Source: A. Marioni: “Innovative Anti-seismic Devices for Bridges”. 
[SIA03]
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3 Free Vibrations
“A structure undergoes free vibrations when it is brought out of 
its static equilibrium, and can then oscillate without any external 

dynamic excitation”

3.1 Undamped free vibrations

(3.1)

3.1.1 Formulation 1: Amplitude and phase angle

• Ansatz:

(3.2)

(3.3)

By substituting Equations (3.2) and (3.3) in (3.1):

(3.4)

(3.5)

 “Natural circular frequency” (3.6)

mu·· t( ) ku t( )+ 0=

u t( ) A ωnt φ–( )cos=

u·· t( ) A– ωn
2 ωnt φ–( )cos=

A ωn
2m– k+( ) ωnt φ–( )cos 0=

ωn
2m– k+ 0=

ωn k m⁄=
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• Relationships

 [rad/s]: Angular velocity (3.7)

 [1/s], [Hz]: Number of revolutions per time (3.8)

 [s]: Time required per revolution (3.9)

• Transformation of the equation of motion

(3.10)

• Determination of the unknowns  and :

The static equilibrium is disturbed by the initial displacement
 and the initial velocity :

 , (3.11)

• Visualization of the solution by means of the Excel file given on
the web page of the course (SD_FV_viscous.xlsx)

ωn k m⁄=

fn
ωn
2π
------=

Tn
2π
ωn
------=

u·· t( ) ωn
2u t( )+ 0=

A φ

u 0( ) u0= u· 0( ) v0=

A u0
2 v0

ωn
------� �
� �

2
+= φtan

v0
u0ωn
------------=
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3.1.2 Formulation 2: Trigonometric functions

(3.12)

• Ansatz:

(3.13)

(3.14)

By substituting Equations (3.13) and (3.14) in (3.12):

(3.15)

(3.16)

 “Natural circular frequency” (3.17)

• Determination of the unknowns  and :

The static equilibrium is disturbed by the initial displacement
 and the initial velocity :

 , (3.18)

mu·· t( ) ku t( )+ 0=

u t( ) A1 ωnt( )cos A2 ωnt( )sin+=

u·· t( ) A1– ωn
2 ωnt( )cos A2ωn

2 ωnt( )sin–=

A1 ωn
2m– k+( ) ωnt( )cos A2 ωn

2m– k+( ) ωnt( )sin+ 0=

ωn
2m– k+ 0=

ωn k m⁄=

A1 A2

u 0( ) u0= u· 0( ) v0=

A1 u0= A2
v0
ωn
------=
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3.1.3 Formulation 3: Exponential Functions

(3.19)

• Ansatz:

(3.20)

(3.21)

By substituting Equations (3.20) and (3.21) in (3.19):

(3.22)

(3.23)

(3.24)

The complete solution of the ODE is:

(3.25)

and by means of Euler’s formulas

 , (3.26)

 , (3.27)

mu·· t( ) ku t( )+ 0=

u t( ) eλt=

u·· t( ) λ2e
λt

=

mλ2 k+ 0=

λ2 k
m
----–=

λ i k
m
----± iωn±= =

u t( ) C1e
iωnt

C2e
i– ωnt

+=

αcos eiα e i– α+
2

-----------------------= αsin eiα e i– α–
2i

-----------------------=

eiα α( )cos i α( )sin+= e i– α α( )cos i α( )sin–=
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Equation (3.25) can be transformed as follows:

(3.28)

(3.29)

Equation (3.29) corresponds to (3.13)!

u t( ) C1 C2+( ) ωnt( )cos i C1 C2–( ) ωnt( )sin+=

u t( ) A1 ωnt( )cos A2 ωnt( )sin+=
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3.2 Damped free vibrations

(3.30)

- In reality vibrations subside 

- Damping exists

- It is virtually impossible to model damping exactly

- From the mathematical point of view viscous damping is
easy to treat

Damping constant: (3.31)

3.2.1 Formulation 3: Exponential Functions

(3.32)

• Ansatz:

 ,  , (3.33)

By substituting Equations (3.33) in (3.32):

(3.34)

(3.35)

(3.36)

mu·· t( ) cu· t( ) ku t( )+ + 0=

c N s
m
----⋅

mu·· t( ) cu· t( ) ku t( )+ + 0=

u t( ) eλt= u· t( ) λeλt= u·· t( ) λ2e
λt

=

λ2m λc k+ +( )eλt 0=

λ2m λc k+ + 0=

λ c
2m
--------– 1

2m
-------- c2 4km–±=
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• Critical damping when: 

(3.37)

• Damping ratio

(3.38)

• Transformation of the equation of motion

(3.39)

(3.40)

(3.41)

• Types of vibrations:

 : Underdamped free vibrations

 : Critically damped free vibrations

 : Overdamped free vibrations

c2 4km– 0=

ccr 2 km 2ωnm= =

ζ c
ccr
------ c

2 km
--------------- c

2ωnm
--------------= = =

mu·· t( ) cu· t( ) ku t( )+ + 0=

u·· t( ) c
m
----u· t( ) k

m
----u t( )+ + 0=

u·· t( ) 2ζωnu· t( ) ωn
2u t( )+ + 0=

ζ c
ccr
------ 1<=

ζ c
ccr
------ 1= =

ζ c
ccr
------ 1>=
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• Types of vibrations 

0

0.5

1

u(
t)/

u 0
[-]

Underdamped vibration
Critically damped vibration
Overdamped vibration

-1

-0.5

0 0.5 1 1.5 2 2.5 3 3.5 4
t/Tn [-]
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Underdamped free vibrations  

By substituting:

 and (3.42)

in:

(3.43)

it is obtained:

(3.44)

(3.45)

 “damped circular frequency” (3.46)

(3.47)

The complete solution of the ODE is:

(3.48)

(3.49)

(3.50)

ζ 1<

ζ c
ccr
------ c

2 km
--------------- c

2ωnm
---------------= = = ωn

2 k
m
----=

λ c
2m
--------– 1

2m
-------- c2 4km–± c

2m
--------– c

2m
--------� �
� � 2 k

m
----–±= =

λ ζωn– ωn
2ζ2 ωn

2–± ζωn– ωn ζ2 1–±= =

λ ζωn– iωn 1 ζ2–±=

ωd ωn 1 ζ2–=

λ ζωn– iωd±=

u t( ) C1e
ζωn– iωd+( )t

C2e
ζωn– iωd–( )t

+=

u t( ) e
ζωnt–

C1e
iωdt

C2e
i– ωdt

+( )=

u t( ) e
ζωnt–

A1 ωdt( )cos A2 ωdt( )sin+( )=
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The determination of the unknowns  and  is carried out as
usual by means of the initial conditions for displacement
( ) and velocity ( ) obtaining:

 , (3.51)

3.2.2 Formulation 1: Amplitude and phase angle

Equation (3.50) can be rewritten as “the amplitude and phase
angle”:

(3.52)

with

 , (3.53)

The motion is a sinusoidal vibration with

circular frequency  and decreasing amplitude 

A1 A2

u 0( ) u0= u· 0( ) v0=

A1 u0= A2
v0 ζωnu0+

ωd
---------------------------=

u t( ) Ae
ζωnt–

ωdt φ–( )cos=

A u0
2 v0 ζωnu0+

ωd
---------------------------� �
� �

2
+= φtan

v0 ζωnu0+
ωdu0

---------------------------=

ωd Ae
ζωnt–
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• Notes

- The period of the damped vibration is longer, i.e. the vibra-
tion is slower  

- The envelope of the vibration is represented by the follow-
ing equation:

 with (3.54)

- Visualization of the solution by means of the Excel file giv-
en on the web page of the course (SD_FV_viscous.xlsx)

0 3

0.4

0.5

0.6

0.7

0.8

0.9

1

T n
/T

d

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Damping ratio ζ

ωd ωn 1 ζ2–=

Td
Tn

1 ζ2–
------------------=

u t( ) Ae
ζωnt–

= A u0
2 v0 ζωnu0+

ωd
---------------------------� �
� �

2
+=
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3.3 The logarithmic decrement  

• Amplitude of two consecutive cycles

(3.55)

with

(3.56)

(3.57)

-5

0

5

10

15

20

D
is

pl
ac

em
en

t

Free vibration

-20

-15

-10

0 1 2 3 4 5 6 7 8 9 10
Time (s)

u0
u1

Td

u0
u1
-----

Ae
ζωnt–

ωdt φ–( )cos

Ae
ζωn t Td+( )–

ωd t Td+( ) φ–( )cos
--------------------------------------------------------------------------------=

e
ζωn t Td+( )–

e
ζωnt–

e
ζωnTd–

=

ωd t Td+( ) φ–( )cos ωdt ωdTd φ–+( )cos ωdt φ–( )cos= =
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we obtain:

(3.58)

• Logarithmic decrement 

(3.59)

The damping ratio becomes:

 (3.60)

u0
u1
----- 1

e
ζωnTd–

----------------- e
ζωnTd= =

δ

δ
u0
u1
-----� �
� �ln ζωnTd

2πζ

1 ζ2–
------------------ 2πζ (if ζ small)≅= = =

ζ δ

4π2 δ2+
------------------------- δ

2π
------ (if ζ small)≅=

3

4

5

6

7

8

9

10

ith
m

ic
 D

ec
re

m
en

t δ

Exact equation
Approximation

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
ga

r

Damping ratio ζ
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• Evaluation over several cycles

(3.61)

(3.62)

• Halving of the amplitude

(3.63)

Useful formula for quick evaluation

• Watch out: damping ratio vs. damping constant 

m1, k1, c1 m2>m1, k1, c1

u0
uN
------

u0
u1
-----

u1
u2
----- …

uN 1–
uN

-------------⋅ ⋅ ⋅ e
ζωnTd( )

N
e

NζωnTd= = =

δ 1
N
----

u0
uN
------� �
� �ln=

ζ

1
N
----

u0
uN
------� �
� �ln

2π
----------------------

1
N
---- 2( )ln

2π
------------------ 1

9N
------- 1

10N
----------≅= = =

Empty Full

ζ1
c1

2 k1m1

--------------------= ζ2
c1

2 k1m2

-------------------- ζ1<=
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3.4 Friction damping  

• Solution of b)

with (3.64)

(3.65)

by means of the initial conditions  ,  we ob-
tain the constants:

 , 

• Solution of a): Similar, with  instead of 

a) b)

fk t( )– fμ– mu·· t( )=

mu·· t( ) ku t( )+ fμ–=

fk t( )– fμ+ mu·· t( )=

mu·· t( ) ku t( )+ fμ=

u t( ) A1 ωnt( )cos A2 ωnt( )sin uμ+ += uμ
fμ
k
----=

u· t( ) ωnA1 ωnt( )sin– ωnA2 ωnt( )cos+=

u 0( ) u0= u· 0( ) v0=

A1 u0 uμ–= A2 v0 ωn⁄=

uμ– +uμ
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• Free vibrations
It is a nonlinear problem! 

• Calculation example:

- Step 1:

Initial conditions  , 

 , (3.66)

(3.67)

End displacement: 

Figure: f=0.5 Hz , u0=10 , v0 = 50, uf = 1
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u 0( ) u0= u· 0( ) 0=

A1 u0 uμ–= A2 0=

u t( ) u0 uμ–[ ] ωnt( )cos uμ+= 0 t π
ωn
------<≤

u π
ωn
------� �
� � u0 uμ–[ ] 1–( ) uμ+ u0– 2uμ+= =
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- Step 2:

Initial conditions  , 

 , (3.68)

(3.69)

End displacement: 

- Step 3:

Initial conditions ....

• Important note:
The change between case a) and case b) occurs at velocity re-
versals. In order to avoid the build-up of inaccuracies, the dis-
placement at velocity reversal should be identified with
adequate precision (iterate!)

• Visualization of the solution by means of the Excel file given on
the web page of the course (SD_FV_friction.xlsx)

• Characteristics of friction damping

- Linear decrease in amplitude by  at each cycle

- The period of the damped and of the undamped oscillator
is the same:

u 0( ) u0– 2uμ+= u· 0( ) 0=

A1 u 0( ) uμ+ u0– 2uμ uμ+ + u0– 3uμ+= = = A2 0=

u t( ) u0– 3uμ+[ ] ωnt( )cos uμ–= 0 t π
ωn
------<≤

u π
ωn
------� �
� � u0– 3uμ+[ ] 1–( ) uμ– u0 4uμ–= =

4uμ

Tn
2π
ωn
------=
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• Comparison Viscous damping vs. Friction damping

Free vibration: f=0.5 Hz , u0=10 , v0 = 50, uf = 1

Logarithmic decrement:

Comparison:

U0 UN N δ ζ [%]
1 18.35 14.35 1 0.245 3.91
2 18.35 10.35 2 0.286 4.56
3 18.35 6.35 3 0.354 5.63
4 18.35 2.35 4 0.514 8.18

Average 5.57
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4 Response to Harmonic Excitation  

An harmonic excitation can be described either by means of a
sine function (Equation 4.1) or by means of a cosine function
(Equation 4.2):

(4.1)

(4.2)

Here we consider Equation (4.2) which after transformation be-
comes:

(4.3)

where: : Circular frequency of the SDoF system

: Circular frequency of the excitation

mu·· cu· ku+ + Fo ωt( )sin=

mu·· cu· ku+ + Fo ωt( )cos=

u·· 2ζωnu· ωn
2u+ + fo ωt( )cos=

ωn

ω

fo Fo m⁄ Fo k⁄( ) ωn
2⋅= =
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Linear inhomogeneous differential equation

• Particular solution: 

(4.4)

• Solution of the homogeneous ODE: 

(4.5)

• Complete solution: 

(4.6)

• Initial conditions

, (4.7)

up

u··p 2ζωnu·p ωn
2up+ + f t( )=

uh

u··h 2ζωnu·h ωn
2uh+ + 0=

u up Cuh+=

u·· 2ζωnu· ωn
2u+ + fo ωt( )cos=

u 0( ) u0= u· 0( ) v0=
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4.1 Undamped harmonic vibrations

(4.8)

• Ansatz for particular solution

(4.9)

(4.10)

By substituting (4.9) and (4.10) in (4.8):

(4.11)

(4.12)

(4.13)

(4.14)

• Ansatz for the solution of the homogeneous ODE
(see section on free vibrations)

(4.15)

u·· ωn
2u+ fo ωt( )cos=

up Ao ωt( )cos=

u··p A– oω2 ωt( )cos=

A– oω2 ωt( )cos Aoωn
2 ωt( )cos+ fo ωt( )cos=

Ao ω2– ωn
2+( ) fo=

Ao
fo

ωn
2 ω2–

-------------------
Fo
k
----- 1

1 ω ωn⁄( )2–
-------------------------------⋅= =

up
fo

ωn
2 ω2–

------------------- ωt( )cos=

uh B1 ωnt( )cos B2 ωnt( )sin+=
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• Complete solution of the ODE:

(4.16)

By means of the initial conditions given in Equation (4.7), the
constants  and  can be calculated as follows:

, (4.17)

• Denominations:

- Homogeneous part of the solution: “transient”

- Particular part of the solution: “steady-state”

• Visualization of the solution by means of the Excel file given on
the web page of the course (SD_HE_cosine_viscous.xlsx)

• Harmonic vibration with sine excitation

By means of the initial conditions given in Equation (3.7), the constants
 and  can be calculated as follows:

,

u A1 ωnt( )cos A2 ωnt( )sin
fo

ωn
2 ω2–

------------------- ωt( )cos+ +=

A1 A2

A1 u0
fo

ωn
2 ω2–

-------------------–= A2
v0
ωn
------=

u A1 ωnt( )cos A2 ωnt( )sin
fo

ωn
2 ω2–

------------------- ωt( )sin+ +=

A1 A2

A1 u0= A2
v0
ωn
------

fo ω ωn⁄( )

ωn
2 ω2–

------------------------–=
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4.1.1 Interpretation as a beat

 with (4.18)

The solution is:

(4.19)

and using the trigonometric identity

(4.20)

one gets the equation

(4.21)

that describes a beat with:

Fundamental vibration: (4.22)

Envelope: (4.23)

A beat is always present, but is only evident when the natural fre-
quency of the SDoF system and the excitation frequency are
close (see figures on the next page)

u·· ωn
2u+ fo ωt( )cos= u 0( ) u· 0( ) 0= =

u t( )
fo

ωn
2 ω2–

------------------- ωt( )cos ωnt( )cos–[ ]⋅=

α( )cos β( )cos– 2 α β–
2

-------------t� �
� � α β+

2
-------------t� �
� �sinsin–=

u t( )
2fo

ω2 ωn
2–

-------------------
ω ωn–

2
----------------t� �
� � ω ωn+

2
-----------------t� �
� �sinsin⋅=

fG
f fn+

2
------------=

fU
f fn–

2
------------=
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• Case 1: Natural frequency SDoF 0.2 Hz, excitation frequency 0.4 Hz 

• Case 2: Natural frequency SDoF 2.0 Hz, excitation frequency 2.2 Hz  
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• Transition to f = fn 

Resonance!

f
fn
---- 2.0500

2.0000
----------------=

f
fn
---- 2.0250

2.0000
----------------=

f
fn
---- 2.0125

2.0000
----------------=

f
fn
---- 2.0000

2.0000
----------------=
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4.1.2 Resonant excitation (ω = ωn)

(4.24)

• Ansatz for the particular solution

(4.25)

(4.26)

(4.27)

By substituting Equations (4.25) and (4.27) in (4.24):

(4.28)

(4.29)

(4.30)

(4.31)

• Ansatz for the solution of the homogeneous ODE
(see section on free vibrations)

(4.32)

u·· ωn
2u+ fo ωnt( )cos=

up Aot ωnt( )sin=

u·p Ao ωnt( )sin Aoωnt ωnt( )cos+=

u··p 2Aoωn ωnt( )cos Aoωn
2t ωnt( )sin–=

2Aoωn ωnt( )cos Aoωn
2t ωnt( )sin– Aoωn

2t ωnt( )sin+ fo ωnt( )cos=

2Aoωn fo=

Ao
fo

2ωn
----------

Fo
k
-----

ωn
2

------⋅= =

up
fo

2ωn
----------t ωnt( )sin=

uh B1 ωnt( )cos B2 ωnt( )sin+=
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• Complete solution of the ODE:

(4.33)

By means of the initial conditions given in Equation (4.7), the
constants  and  can be calculated as follows:

, (4.34)

• Special case  
(The homogeneous part of the solution falls away)

(4.35)

Is a sinusoidal vibration with amplitude:

(4.36)

- The amplitude grows linearly with time (see last picture of
interpretation “beat”); 

- We have  when , i.e. after infinite time the am-
plitude of the vibration is infinite as well.

• Visualization of the solution by means of the Excel file given on
the web page of the course (SD_HE_cosine_viscous.xlsx)

u A1 ωnt( )cos A2 ωnt( )sin
fo

2ωn
----------t ωnt( )sin+ +=

A1 A2

A1 u0= A2
v0
ωn
------=

u0 v0 0= =

u
fo

2ωn
----------t ωnt( )sin=

A
fo

2ωn
----------t=

A ∞→ t ∞→
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4.2 Damped harmonic vibration

(4.37)

• Ansatz for particular solution

(4.38)

(4.39)

(4.40)

By substitution Equations (4.38) to (4.40) in (4.37):

(4.41)

Equation (4.41) shall be true for all times  and for all 
constants  and , therefore Equations (4.42) and (4.43)
can be written as follows:

(4.42)

(4.43)

The solution of the system [(4.42), (4.43)] allows the 
calculations of the constants  and  as:

, 

(4.44)

u·· 2ζωnu· ωn
2u+ + fo ωt( )cos=

up A3 ωt( )cos A4 ωt( )sin+=

u·p A– 3ω ωt( )sin A4ω ωt( )cos+=

u··p A– 3ω2 ωt( )cos A4ω2 ωt( )sin–=

ωn
2 ω2–( )A3 2ζωnωA4+[ ] ωt( )cos 2ζωnωA3– ωn

2 ω2–( )A4+[ ] ωt( )sin+ fo ωt( )cos=

t
A3 A4

ωn
2 ω2–( )A3 2ζωnωA4+ fo=

2ζωnωA3– ωn
2 ω2–( )A4+ 0=

A3 A4

A3 fo
ωn

2 ω2–

ωn
2 ω2–( )

2
2ζωnω( )2+

----------------------------------------------------------= A4 fo
2ζωnω

ωn
2 ω2–( )

2
2ζωnω( )2+

----------------------------------------------------------=
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• Ansatz for the solution of the homogeneous ODE
(see Section 3.2 on damped free vibrations)

(4.45)

with:

 “damped circular frequency” (4.46)

• Complete solution of the ODE:

(4.47)

By means of the initial conditions of Equation (4.7), the con-
stants  and  can be calculated. The calculation is labo-
rious and should be best carried out with a mathematics pro-
gram (e.g. Maple).

• Denominations:

- Homogeneous part of the solution: “transient”

- Particular part of the solution: “steady-state”

• Visualization of the solution by means of the Excel file given on
the web page of the course (SD_HE_cosine_viscous.xlsx)

uh e
ζωnt–

B1 ωdt( )cos B2 ωdt( )sin+( )=

ωd ωn 1 ζ2–=

u e
ζωnt–

A1 ωdt( )cos A2 ωdt( )sin+( ) A3 ωt( )cos A4 ωt( )sin+ +=

A1 A2
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• Example 1: fn = 1Hz, f = 0.2Hz, ζ = 5%, fo = 1000, u0 = 0, v0 = fo/ωn 

• Example 2: Like 1 but with F(t) = Fosin(ωt) instead of Focos(ωt) 
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4.2.1 Resonant excitation (ω = ωn)

By substituting  in Equation (4.44) the constants  and
 becomes:

, (4.48)

i.e. if damping is present, the resonant excitation is not a special
case any more, and the complete solution of the differential
equation is:

(4.49)

• Special case 

, (4.50)

(4.51)

- After a certain time, the homogeneous part of the solution
subsides and what remains is a sinusoidal oscillation of the
amplitude:

(4.52)

ω ωn= A3
A4

A3 0= A4
fo

2ζωn
2

-------------=

u e
ζωnt–

A1 ωdt( )cos A2 ωdt( )sin+( )
fo

2ζωn
2

------------- ωnt( )sin+=

u0 v0 0= =

A1 0= A2
fo

2ζωn
2 1 ζ2–

--------------------------------–
fo

2ζωnωd
--------------------–= =

u
fo

2ζωn
2

------------- ωnt( )sin
ωdt( )sin

1 ζ2–
---------------------e

ζωnt–
–

� �
� �
� �

=

A
fo

2ζωn
2

-------------=
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- The amplitude is limited, i.e. the maximum displacement of
the SDoF system is:

(4.53)

where  is the static displacement.

- For small damping ratios ( )  and 
hence Equations (4.51) becomes:

(4.54)

It is a sinusoidal vibration with the amplitude:

(4.55)

and the magnitude of the amplitude at each maxima  is

(4.56)

Maxima occur when , d.h. when

, (4.57)

 (4.58)

umax
fo

2ζωn
2

-------------
Fo

2ζk
---------

ust
2ζ
------= = =

ust Fo k⁄=

ζ 0.2≤ ωd ωn≈ 1 ζ2– 1≈

u
fo

2ζωn
2

------------- 1 e
ζωnt–

–( ) ωnt( )sin umax 1 e
ζωnt–

–( ) ωnt( )sin= =

A umax 1 e
ζωnt–

–( )=

j

uj
umax
----------- 1 e

ζωntj–
–( ) ωntj( )sin=

ωnt( )sin 1–=

tj 4j 1–( )
Tn
4

------⋅= j 1…∞=

uj
umax
----------- 1 e

ζωn 4j 1–( )
Tn

4
-----⋅–

– 1 e
ζ 4j 1–( ) π

2
---⋅–

–= =
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• Dynamic amplification 

• Magnitude of the amplitude after each cycle: f(umax)  
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• Magnitude of the amplitude after each cycle: f(ust)  
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5 Transfer Functions

5.1 Force excitation

The steady-state displacement of a system due to harmonic ex-
citation is (see Section 4.2 on harmonic excitation):

(5.1)

with

, (5.2)

By means of the trigonometric identity

 where (5.3)

Equation (5.1) can be transformed as follows:

(5.4)

It is a cosine vibration with the maximum dynamic amplitude
:

(5.5)

and the phase angle  obtained from:

(5.6)

up a1 ωt( )cos a2 ωt( )sin+=

a1 fo
ωn

2 ω2–

ωn
2 ω2–( )

2
2ζωnω( )2+

----------------------------------------------------------= a2 fo
2ζωnω

ωn
2 ω2–( )

2
2ζωnω( )2+

----------------------------------------------------------=

a α( )cos b α( )sin+ a2 b2+ α φ–( )cos⋅= φtan b
a
---=

up umax ωt φ–( )cos=

umax

umax a1
2 a2

2+=

φ

φtan
a2
a1
-----=
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The maximum dynamic amplitude  given by Equation (5.5)
can be transformed to:

(5.7)

(5.8)

(5.9)

(5.10)

Introducing the maximum static amplitude  the
dynamic amplification factor  can be defined as:

(5.11)

The maximum amplification factor  occurs when its deriva-
tive, given by Equation (5.12), is equal to zero.

umax

umax fo
ωn

2 ω2–

ωn
2 ω2–( )

2
2ζωnω( )2+

----------------------------------------------------------
� �
� �
� � 2

fo
2ζωnω

ωn
2 ω2–( )

2
2ζωnω( )2+

----------------------------------------------------------
� �
� �
� � 2

+=

umax fo
ωn

2 ω2–( )
2

2ζωnω( )2+

ωn
2 ω2–( )

2
2ζωnω( )2+[ ]

2
-----------------------------------------------------------------=

umax fo
1

ωn
2 ω2–( )

2
2ζωnω( )2+

--------------------------------------------------------------=

umax
fo

ωn
2

------ 1

1 ω ωn⁄( )2–[ ]
2

2ζ ω ωn⁄( )[ ]2+
----------------------------------------------------------------------------------=

uo Fo k⁄ fo ωn
2⁄= =

V ω( )

V ω( )
umax

uo
----------- 1

1 ω ωn⁄( )2–[ ]
2

2ζ ω ωn⁄( )[ ]2+
-----------------------------------------------------------------------------------= =

V ω( )
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(5.12)

 when:  , (5.13)

The maximum amplification factor  occurs when:

 for (5.14)

and we have:

: (5.15)

: (5.16)

From Equation (5.6), the phase angle  is:

(5.17)

The phase angle has the following interesting property:

(5.18)

at  we have:  (=  when  in deg)
(5.19)

ωd
dV 2ωωn

2 ω2 ωn
2 1 2ζ2–( )–[ ]

ω4 2 1 2ζ2–( )ω2ωn
2– ωn

4+[ ]
3 2⁄( )

---------------------------------------------------------------------------------=

ωd
dV 0= ω 0= ω ωn 1 2ζ2–±=

V ω( )

ω ωn 1 2ζ2–= ζ 1
2

-------< 0.71≈

ω ωn= V 1
2ζ
------=

ω ωn 1 2ζ2–= V 1

2ζ 1 ζ2–
-------------------------=

φ

φtan
2ζωnω

ωn
2 ω2–

-------------------
2ζ ω ωn⁄( )

1 ω ωn⁄( )2–
-------------------------------= =

ω ωn⁄( )d
dφ 2ζ 1 ω ωn⁄( )2+[ ]

1 2 ω ωn⁄( )2– ω ωn⁄( )4 4ζ2 ω ωn⁄( )2+ +
----------------------------------------------------------------------------------------------------=

ω ωn⁄ 1=
ω ωn⁄( )d

dφ 1
ζ
---= 1

ζ
--- 180

π
---------⋅ φ
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5.1.1 Comments on the amplification factor V

(5.20)

• : Slow variation of the excitation (ζ not important)

•  therefore:  

• : Motion and excitation force are in phase

• : Quick variation of the excitation (ζ not important)

•

• : Mass controls the behaviour

• : Motion and excitation force are opposite

• : (ζ very important)

•

• : Damping controls the behaviour

• : zero displacement when excitation force is maximum

V ω( ) 1

1 ω ωn⁄( )2–[ ]
2

2ζ ω ωn⁄( )[ ]2+
-----------------------------------------------------------------------------------=

ω ωn⁄ 1«

V ω( ) 1≈ umax uo≈

φ 0≈

ω ωn⁄ 1»

V ω( )
ωn
ω
------� �
� �

2
≈

umax uo
ωn
ω
------� �
� �

2
⋅≈ Fo mω2( )⁄=

φ 180≈

ω ωn⁄( ) 1≈

V ω( ) 1
2ζ
------≈

umax uo 2ζ( )⁄≈ Fo cωn( )⁄=

φ 90≈
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• Amplification factor 

• Phase angle  
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• Example:

An excitation produces the static displacement

(5.21)

and its maximum is:

(5.22)

The steady-state dynamic response of the system is:

(5.23)

therefore:

, (5.24)

In the next plots the time histories of  and  are
represented and compared.

The phase angle  is always positive and because of the mi-
nus sign in Equation (5.24) it shows how much the response
to the excitation lags behind.

ust
Fo ωt( )cos

k
--------------------------=

uo
Fo
k
-----=

up umax ωt φ–( )cos=

ust
uo
------ ωt( )cos=

up
uo
----- V ωt φ–( )cos=

ust uo⁄ up uo⁄

φ
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Frequency of SDoF System fn = 1Hz (ωn = 6.28rad/s), Damping ζ = 0.1 
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V

Δt

Δt

V

V
Δt

ω ωn⁄ 0.9=

ω 0.9 6.28⋅
5.65 rad/s

=
=

V 3.82=

φ 43.45°
0.76 rad

=
=

Δt φ
ω
---- 0.76

5.65
----------

0.14 s

= =

=

ω ωn⁄ 1.0=

ω 1.0 6.28⋅
6.28 rad/s

=
=

V 5.00=

φ 90.00°
1.57 rad

=
=

Δt φ
ω
---- 1.57

6.28
----------

0.25 s

= =

=

ω ωn⁄ 1.1=

ω 1.1 6.28⋅
6.91 rad/s

=
=

V 3.28=

φ 133.66°
2.33 rad

=
=

Δt φ
ω
---- 2.33

6.91
----------

0.34 s

= =

=
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5.1.2 Steady-state displacement quantities

• Displacement: Corresponds to Equation (5.4)

(5.25)

• Velocity: Obtained by derivating Equation (5.25)

(5.26)

(5.27)

 with (5.28)

• Acceleration: Obtained by derivating Equation (5.26)

(5.29)

(5.30)

 with (5.31)

up
Fo k⁄
------------ V ω( ) ωt φ–( )cos=

u·p
Fo k⁄
------------ V ω( )ω ωt φ–( )sin–=

u·p
Fo k⁄( )ωn

------------------------ V ω( ) ω
ωn
------ ωt φ–( )sin–=

u·p

Fo km⁄
---------------------- Vv ω( ) ωt φ–( )sin–= Vv ω( ) ω

ωn
------V ω( )=

u··p
Fo k⁄
------------ V ω( )ω2 ωt φ–( )cos–=

u··p
Fo k⁄( )ωn

2
------------------------ V ω( )ω2

ωn
2

------ ωt φ–( )cos–=

u··p
Fo m⁄
-------------- Va ω( ) ωt φ–( )cos–= Va ω( ) ω2

ωn
2

------V ω( )=
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• Amplification factors  
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2ζ 1 ζ–
----------------------=
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5.1.3 Derivating properties of SDoF systems from 
harmonic vibrations

• Half-power bandwidth  

Condition:

(5.32)

(5.33)

(5.34)

(5.35)
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V(Resonance)

V(Resonance)

2

2ζ

ωa ωb

V ω( )
V ω ωn⁄ 1 2ζ2–=( )

2
----------------------------------------------------- 1

2
------- 1

2ζ 1 ζ–
----------------------⋅= =

1

1 ω ωn⁄( )2–[ ]
2

2ζ ω ωn⁄( )[ ]2+
---------------------------------------------------------------------------------- 1

2
------- 1

2ζ 1 ζ–
----------------------⋅=

ω
ωn
------� �
� � 4

2 1 2ζ2–( ) ω
ωn
------� �
� � 2

– 1 8ζ2 1 ζ2–( )–+ 0=

ω
ωn
------� �
� � 2

1 2ζ2– 2ζ 1 ζ2–±=
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For small damping, the terms featuring  can be neglected:

(5.36)

This yield the solution for the half-power bandwidth:

(5.37)

• Remarks on the frequency response curve
• The natural frequency of the system can be derived from the res-

onant response. However, it is sometimes problematic to build the
whole frequency response curve because at resonance the sys-
tem could be damaged. For this reason it is often better to deter-
mine the properties of a system based on vibration decay tests
(see section on free vibration)

• The natural frequency  can be estimated by varying the Excita-

tion until a  phase shift in the response occurs.
• Damping can be calculated by means of Equation (5.15) as: 

However, it is sometimes difficult to determine the static deflection
, therefore, the definition of half-power bandwidth is used to 

estimate the damping.

• Damping can be determined from the slope of the phase angle
curve using Equation (5.19).

ζ2

ω
ωn
------ 1 2ζ± 1 ζ±≈ ≈

2ζ
ωb ωa–

ωn
-------------------=

ωn

90°

ζ 1
2
---

uo
umax
-----------⋅=

uo
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5.2 Force transmission (vibration isolation) 

The reaction force  results from the sum of the spring force
 and the damper’s force 

(5.38)

The steady-state deformation of the system due to harmonic ex-
citation  is according to Equation (5.4):

 with (5.39)

By substituting Equation (5.39) and its derivative into Equation
(5.38) we obtain:

 (5.40)

The mass-spring-damper system,
shown here on the right, is excited
by the harmonic force

 

What is the reaction force ,
which is introduced in the founda-
tion?

F t( ) Fo ωt( )cos=

FT t( )

FT t( )
Fs Fc

FT t( ) Fs t( ) Fc t( )+ ku t( ) cu· t( )+= =

F t( )

up umax ωt φ–( )cos= umax uoV ω( )
Fo
k
-----V ω( )= =

FT t( )
Fo
k
-----V ω( ) k ωt φ–( )cos cω ωt φ–( )sin–[ ]=
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with the trigonometric identity from Equation (5.3):

(5.41)

and by substituting the identity :

(5.42)

the maximum reaction force becomes:

(5.43)

where the quantity  is called Transmissibility and it is
equal to:

(5.44)

Special case:

(5.45)

FT t( )
Fo
k
-----V ω( ) k2 c2ω2+ ωt φ–( )cos[ ]=

c 2ζk( ) ωn⁄=

FT t( ) FoV ω( ) 1 2ζ ω
ωn
------� �

� � 2
+ ωt φ–( )cos=

FT,max
Fo

--------------- TR ω( )=

TR ω( )

TR ω( ) V ω( ) 1 2ζ ω
ωn
------� �

� � 2
+

1 2ζ ω ωn⁄( )[ ]2+

1 ω ωn⁄( )2–[ ]
2

2ζ ω ωn⁄( )[ ]2+
------------------------------------------------------------------------------

=

=

TR ω
ωn
------ 1=� �
� � 1 4ζ2+

2ζ
----------------------=
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• Representation of the transmissibility TR

- When  then : Vibration isolation

- When  damping has a stiffening effect

- High tuning (sub-critical excitation)

- Low tuning (super-critical excitation): 
Pay attention to the starting phase!
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5.3 Base excitation (vibration isolation)

5.3.1 Displacement excitation 

The mass-spring-damper system, shown here above is excited
by the harmonic vertical ground displacement

 (5.46)

What is the absolute vertical displacement  of the system?

The differential equation of the system is:

(5.47)

after rearrangement:

(5.48)

yg t( ) ygo ωt( )cos=

u t( )

mu·· c u· y·–( ) k u y–( )+ + 0=

mu·· cu· ku+ + ky cy·+=
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The right hand side of the ODE (5.48) can be interpreted as an
external excitation force :

(5.49)

The external excitation force  is harmonic with amplitude:

(5.50)

According to Equations (5.10) and (5.11) the maximum displace-
ment of the system due to such a force is equal to:

(5.51)

By substituting Equation (5.44) we obtain:

(5.52)

where again  is the transmissibility given by Equation
(5.44).

F t( ) ky cy·+=

F t( ) kygo ωt( )cos cygoω ωt( )sin–

kygo ωt( )cos 2ζ ω
ωn
------ ωt( )sin–

kygo 1 2ζ ω
ωn
------� �

� � 2
+ ωt φ+( )cos

=

=

=

F t( )

Fo kygo 1 2ζ ω
ωn
------� �

� � 2
+=

umax
Fo
k
-----V ω( ) ygo 1 2ζ ω

ωn
------� �

� � 2
+ V ω( )= =

umax
ygo

----------- TR ω( )=

TR ω( )
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5.3.2 Acceleration excitation 

The mass-spring-damper system, shown above here, is excited
by the harmonic vertical ground acceleration.

 (5.53)

What is the absolute vertical acceleration  of the system?

The differential equation of the system is:

(5.54)

after rearrangement:

(5.55)

(5.56)

(5.57)

(5.58)

Pay attention:
This base excitation, like
the excitation discussed
in the previous Section
5.3.1, is an harmonic ex-
citation and not an arbi-
trary excitation like e.g.
an earthquake (see Sec-
tion 7).

y··g t( ) y··go ωt( )cos=

u·· t( )

mu·· c u· y·–( ) k u y–( )+ + 0=

mu·· c u· y·–( ) k u y–( ) my··–+ + my··–=

m u·· y··–( ) c u· y·–( ) k u y–( )+ + my··–=

mu··rel cu·rel kurel+ + my··g–=

mu··rel cu·rel kurel+ + my··go ωt( )cos–=

Course “Fundamentals of Structural Dynamics” An-Najah 2013

5 Transfer Functions Page 5-18 

The steady-state relative deformation  of the system due to
the harmonic ground acceleration  is given by Equation (5.1):

(5.59)

with the constants  and  according to Equation (5.2), and
with:

(5.60)

By double derivation of Equation (5.59), the relative acceleration
 can be calculated as:

(5.61)

The desired absolute acceleration is:

(5.62)

By substituting the constants ,  and  given by Equations
(5.2) and (5.60), and after a long but simple rearrangement, the
equations for the maximum absolute vertical acceleration of the
system is obtained as:

(5.63)

where again  is the transmissibility given by Equation
(5.44).

urel
y··g

urel a1 ωt( )cos a2 ωt( )sin+=

a1 a2

fo
Fo
m
-----

my··go–
m

---------------- y··go–= = =

u··rel

u··rel a1ω2 ωt( )cos– a2ω2 ωt( )sin–=

u·· u··rel y··g+ a1ω2 ωt( )cos– a2ω2 ωt( )sin– y··go ωt( )cos+= =

a1 a2 fo

u··max
y··go

----------- TR ω( )=

TR ω( )
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• Additional derivation:
The maximum relative displacement given by Equation (5.58)
can be easily determined by means of Equations (5.10), (5.11)
and (5.60) as:

(5.64)

(5.65)

urel max,
fo

ωn
2

------V ω( )
y··go–

ωn
2

--------------V ω( )= =

urel max,

y··go ωn
2⁄( )

----------------------- V ω( )=
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5.3.3 Example transmissibility by base excitation 

• Natural frequency SDoF system:

• Excitation frequency:

• Excitation amplitude:

Sought is the maximum absolute acceleration  of the SDoF
system for  and for .

• The steady-state maximum absolute acceleration is:

•  , :  and 

•  , :  and 

• Is the steady-state maximum absolute acceleration really the
maximum absolute acceleration or at start even larger abso-
lute accelerations may result?

• Assumptions: starting time , sinusoidal start function for
excitation frequency and excitation amplitude.

• Numerical computation using Newmark’s Method (see Section 7)

Vertical base excitation:

 y··g t( ) A0 ω0t( )cos=

fn 0.5Hz=

f0 2.0Hz=

A0 10m s2⁄=

u··max
ζ 2%= ζ 20%=

ζ 2%= ω0 ωn⁄ 4= TR 0.068= u··max 0.68m s2⁄=

ζ 20%= ω0 ωn⁄ 4= TR 0.125= u··max 1.25m s2⁄=

ta 80s=
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• Case 1: Initial situation with ζ = 2%
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• Case 2: Increase of the damping rate from ζ = 2% to ζ = 20%
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• Case 3: Reduction of starting time from ta = 80s to ta = 20s (ζ = 2%) 
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• Case 4: Change the start function for the amplitude (ζ = 2%) 
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• Notes
The excitation function in the starting phase has the form:

(5.66)

The excitation angular frequency varies with time, and is:

(5.67)

• Linear variation of the excitation circular frequency

 :  (5.68)

• Parabolic variation of the excitation circular frequency

 :  (5.69)

• Sinusoidal variation of the excitation circular frequency

:  

(5.70)
• Double-sinusoidal variation of the excitation circular frequency

: (5.71)

• Visualization of the solution by means of the Excel file given on
the web page of the course (SD_HE_Starting_Phase.xlsx)

y··g t( ) A t( ) Ω t( ) t⋅( )cos=

ω t( )
td

d Ω t( ) t⋅( )=

Ω t( )
ω0
2ta
------- t⋅= ω t( ) ω0

t
ta
---⋅= 0 t ta≤ ≤( )

Ω t( )
ω0

3ta
2

------- t2⋅= ω t( ) ω0
t
ta
---� �
� � 2

⋅= 0 t ta≤ ≤( )

Ω t( )
2ω0ta

πt
-------------- π

2
--- t

ta
---⋅� �

� �cos–= ω t( ) ω0
π
2
--- t

ta
---⋅� �

� �sin⋅= 0 t ta≤ ≤( )

Ω t( )
ω0
2

------ 1
π t

ta
---⋅� �

� � tasin

πt
-----------------------------–= ω t( ) ω0 1 π t

ta
---⋅� �

� �cos–=
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5.4 Summary Transfer Functions

(5.72)

(5.73)

• Force excitation: 

• Force transmission:

• Displacement excitation:

• Acceleration excitation

• For further cases check the literature.

V ω( ) 1

1 ω ωn⁄( )2–[ ]
2

2ζ ω ωn⁄( )[ ]2+
-----------------------------------------------------------------------------------=

TR ω( )
1 2ζ ω ωn⁄( )[ ]2+

1 ω ωn⁄( )2–[ ]
2

2ζ ω ωn⁄( )[ ]2+
------------------------------------------------------------------------------=

umax
uo

----------- V ω( )=

FT,max
Fo

--------------- TR ω( )=

umax
ygo

----------- TR ω( )=

u··max
y··go

----------- TR ω( )=

urel max,

y··go ωn
2⁄( )

----------------------- V ω( )=
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6 Forced Vibrations

6.1 Periodic excitation  

An excitation is periodic if:

for (6.1)

The function  can be represented as a sum of several har-
monic functions in the form of a Fourier series, namely:

(6.2)

1.5

2.0

2.5

3.0

3.5

4.0

Fo
rc

e 
 F

(t)
 [k

N
]

Half-sine excitation

0.0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

Time (s)

T0

F t nT0+( ) F t( )= n ∞– … 1– 0 1 … ∞, , , , , ,=

F t( )

F t( ) a0
an nω0t( )cos bn nω0t( )sin+[ ]

n 1=

∞

�+=
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with the fundamental frequency

(6.3)

Taking into account the orthogonality relations:

(6.4)

(6.5)

(6.6)

the Fourier coefficients  can be computed by multiplying Equation
(6.2) by  first, and then integrating it over the period .

•

(6.7)

(6.8)

(6.9)

ω0
2π
T0
------=

nω0t( ) jω0t( )sinsin td
0

T0

	
0           for  n j≠
T0 2⁄    for  n j=


�
�

=

nω0t( )cos jω0t( )cos td
0

T0

	
0           for  n j≠
T0 2⁄    for  n j=


�
�

=

nω0t( )cos jω0t( )sin td
0

T0

	 0=

an
jω0t( )cos T0

j 0=

F t( ) jω0t( )cos td
0

T0

	 a0 jω0t( )cos td
0

T0

	

an nω0t( )cos jω0t( )cos td
0

T0

	 bn nω0t( )sin jω0t( )cos td
0

T0

	+
n 1=

∞

�+

=

F t( ) td
0

T0

	 a0 td
0

T0

	 a0T0= =

a0
1

T0
------ F t( ) td

0

T0

	⋅=
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•

(6.10)

(6.11)

(6.12)

Similarly, the Fourier coefficients  can be computed by first
multiplying Equation (6.2) by  and then integrating it
over the period .

(6.13)

• Notes

-  is the mean value of the function 

- The integrals can also be calculated over the interval

- For  no b-coefficient exists

j n=

F t( ) jω0t( )cos td
0

T0

	 a0 jω0t( )cos td
0

T0

	

an nω0t( )cos jω0t( )cos td
0

T0

	 bn nω0t( )sin jω0t( )cos td
0

T0

	+
n 1=

∞

�+

=

F t( ) nω0t( )cos td
0

T0

	 an
T0

2
-----⋅=

an
2

T0
------ F t( ) nω0t( )cos td

0

T0

	⋅=

bn
jω0t( )sin

T0

bn
2

T0
------ F t( ) nω0t( )sin td

0

T0

	⋅=

a0 F t( )

T0 2⁄– T0 2⁄[ , ]

j 0=
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6.1.1 Steady state response due to periodic excitation

(6.14)

(6.15)

(6.16)

• Static Part ( )

(6.17)

• Harmonic part “cosine” (see harmonic excitation)

 , 

(6.18)
• Harmonic part “sine” (similar as “cosine”)

 , 

(6.19)

• The steady-state response  of a damped SDoF system un-
der the periodic excitation force  is equal to the sum of the
terms of the Fourier series.

(6.20)

mu·· cu· ku+ + F t( )=

u·· 2ζωnu· ωn
2u+ + F t( )

m
----------=

F t( ) a0 an nω0t( )cos bn nω0t( )sin+[ ]
n 1=

∞

�+=

a0

u0 t( )
a0
k
-----=

un
Co esin t( )

an
k
-----

2ζβn nω0t( )sin 1 βn
2–( ) nω0t( )cos+

1 βn
2–( )

2
2ζβn( )2+

-----------------------------------------------------------------------------------------⋅= βn
nω0
ωn

---------=

un
Sine t( )

bn
k
-----

1 βn
2–( ) nω0t( )sin 2ζβn nω0t( )cos–

1 βn
2–( )

2
2ζβn( )2+

-----------------------------------------------------------------------------------------⋅= βn
nω0
ωn

---------=

u t( )
F t( )

u t( ) u0 t( ) un
Co esin t( )

n 1=

∞
� un

Sine t( )
n 1=
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�+ +=
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6.1.2 Half-sine

A series of half-sine functions is a good model for the force that
is generated by a person jumping. 

(6.21)

The Fourier coefficients can be calculated at the best using a
mathematics program:

with (6.22)
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 F

(t)
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F t( )
A πt
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-----� �
� �    for  0 t tp<≤sin

  0                  for  tp t T0<≤



�


�
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a0
A
T0
------ πt

tp
-----� �
� �sin td

0

tp

	⋅
2Aτ

π
----------= = τ

tp
T0
------=
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(6.23)

(6.24)

The approximation of the half-sine model for  and
 by means of 6 Fourier terms is as follows: 

• Note

The static term  corresponds to the weight of
the person jumping.

an
2A
T0
------- πt

tp
-----� �
� �sin nω0t( ) tdcos

0

tp

	⋅
4Aτ nπτ( )cos 2

π 1 4n2τ2–( )
-------------------------------------= =

bn
2A
T0
------- πt

tp
-----� �
� �sin nω0t( ) tdsin

0
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---------------------------------------------------------= =
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6.1.3 Example: “Jumping on a reinforced concrete beam”

• Beam  

• Excitation (similar to page 186 of [Bac+97])  

• Young’s Modulus:

• Density:

• Bending stiffness:

• Damping rate

• Modal mass

• Modal stiffness

• Jumping frequency:

• Period: 

• Contact time:

• Person’s weight:

• Amplitude:

E 23500MPa=

ρ 20.6kN m3⁄=

EI 124741kNm2=

ζ 0.017=

Mn 0.5Mtot=

Kn
π4

2
----- EI

L3
------⋅=
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• Maximum deflections

Static:

Dynamic:  with  from Equation (6.20)

Ratio:

• Investigated cases  

• Notes

- When the excitation frequency  is twice as large as the
natural frequency  of the beam, the magnification factor

 is small.

- Taking into account the higher harmonics can be impor-
tant!

Length
[m]

Frequency fn
[Hz]

umax
[m] [-]

26.80 1 0.003 1.37

19.00 2 0.044 55.94

15.50 3 0.002 3.62

13.42 4 0.012 41.61

12.01 5 0.001 4.20

10.96 6 0.004 25.02

ust
G
Kn
------=

umax max u t( )( )= u t( )

V
umax
ust

-----------=

V

f0

fn

V
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• Case1: f0 = 2Hz, fn = 1Hz  

• Case 2: f0 = 2Hz, fn = 2Hz  
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• Case 3: f0 = 2Hz, fn = 3Hz  

• Case 4: f0 = 2Hz, fn = 4Hz  
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• Case 5: f0 = 2Hz, fn = 5Hz  

• Case 6: f0 = 2Hz, fn = 6Hz  
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6.2 Short excitation

6.2.1 Step force

The differential equation of an undamped SDoF System loaded
with a force  which is applied suddenly at the time  is:

(6.25)

There is a homogeneous and a particular solution

 (see free vibrations) (6.26)

(6.27)

The overall solution  is completely defined by the in-
itial conditions  and it is:

(6.28)

• Notes
• The damped case can be solved in the exact same way. On the

web page of the course there is an Excel file to illustrate this exci-
tation.

• The maximum displacement of an undamped SDoF System under
a step force is twice the static deflection .

• The deflection at the time  of a damped SDoF System under
a step force is equal to the static deflection .

F0 t 0=

mu·· ku+ F0=

uh A1 ωnt( )cos A2 ωnt( )sin+=

up F0 k⁄=

u t( ) uh up+=
u 0( ) u· 0( ) 0= =

u t( )
F0
k
----- 1 ωnt( )cos–[ ]=

ust F0 k⁄=

t ∞=
ust F0 k⁄=
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• Step force: Tn=2s, Fo/k=2, ζ=0 

• Step force: Tn=2s, Fo/k=2, ζ=10%
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6.2.2 Rectangular pulse force excitation  

The differential equation of an undamped SDoF system under a
rectangular pulse force excitation is:

(6.29)

Up to time  the solution of the ODE corresponds to Equa-
tion (6.28). From time  onwards, it is a free vibration with
the following initial conditions:

(6.30)

(6.31)

The free vibration is described by the following equation:

(6.32)

and through the initial conditions (6.30) and (6.31), the constants
 and  can be determined.

mu·· ku+ F0     for t t1≤=

mu·· ku+ 0       for t t1>=�
�
�

t t1=
t t1=

u t1( )
F0
k
----- 1 ωnt1( )cos–[ ]=

u· t1( )
F0
k
-----ωn ωnt1( )sin=

uh A1 ωn t t1–( )( )cos A2 ωn t t1–( )( )cos+=

A1 A2
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• Short duration of excitation (  is small)

The series expansion of sine and cosine is:

(6.33)

(6.34)

and for small  the expressions simplifies to:

, (6.35)

By substituting Equation (6.35) in Equations (6.30) and (6.31) it
follows that:

, (6.36)

Equation (6.36) shows, that a short excitation can be interpreted
as a free vibration with initial velocity

(6.37)

where  is the impulse generated by the force  over the time .

• Rectangular pulse force excitation:

• Triangular pulse force excitation:

• Arbitrary short excitation:

t1 Tn⁄

ωnt1( )cos 2π
Tn
------t1� �
� �cos 1

ωnt1( )2

2
------------------– …+= =

ωnt1( )sin 2π
Tn
------t1� �
� �sin ωnt1

ωnt1( )3

6
------------------ …+ += =

t1 Tn⁄

ωnt1( )cos 1≅ ωnt1( )sin ωnt1≅

u t1( ) 0= u· t1( )
F0
k
-----ωn

2t1
F0t1
m

----------= =

v0 I m⁄=

I F0 t1

I F0t1=

I 0.5F0t1=

I F t( ) td0
t1	=
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The equation of an undamped free vibration is:

 with  and 

(6.38)

therefore, the maximum amplitude of a short excitation is:

(6.39)

• Notes
• The damped case can be solved in the exact same way. On the web

page of the course there is an Excel file to illustrate this excitation.
• Rectangular pulse force excitation: When , the maximum

response of the SDoF system is equal to two times the static de-
flection .

• Rectangular pulse force excitation: When , for some
 ratios (z.B.: 0.5, 1.5, ...) the maximum response of the SDoF

system can even be as large as .
• Rectangular pulse force excitation: try yourself using the provided

Excel spreadsheet.
• Short excitation: The shape of the excitation has virtually no effect

on the maximum response of the SDoF system. Important is the
impulse.

• Short excitation: Equation (6.59) is exact only for 
and  . For all other cases, it is only an approximation, which
overestimates the actual maximum deflection.

u t( ) A ωnt φ–( )cos= A u0
v0
ωn
------� �
� �

2
+= φtan

v0
ωnu0
------------=

A
v0
ωn
------=

t1 Tn 2⁄>

ust F0 k⁄=
t1 Tn 2⁄>

t1 Tn⁄
4F0 k⁄

t1 Tn⁄ 0→
ζ 0=
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• Rectangular pulse: Tn=2s, t1=0.5s (t1/Tn=0.25), Fo/k=2, ζ=0% 

• Rectangular pulse: Tn=2s, t1=1s (t1/Tn=0.50), Fo/k=2, ζ=0% 
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• Rectangular pulse: Tn=2s, t1=2s (t1/Tn=1.00), Fo/k=2, ζ=0% 

• Rectangular pulse: Tn=2s, t1=3s (t1/Tn=1.50), Fo/k=2, ζ=0% 
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• Rectangular pulse: Tn=2s, t1=3.5s (t1/Tn=1.75), Fo/k=2, ζ=0% 

• Rectangular pulse: Tn=2s, t1=4s (t1/Tn=2.00), Fo/k=2, ζ=0% 

-1

0

1

2

3

4

5

D
is

pl
ac

em
en

t

Dynamic response
Excitation

-4

-3

-2

0 1 2 3 4 5 6 7 8 9 10

Time (s)

1

1.5

2

2.5

3

3.5

4

4.5

D
is

pl
ac

em
en

t

Dynamic response
Excitation

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Time (s)

Course “Fundamentals of Structural Dynamics” An-Najah 2013

6 Forced Vibrations Page 6-20 

• Short rectangular pulse: Tn=2s, t1=0.05s, Fo/k=2, ζ=0% 

• Short rectangular pulse: Tn=2s, t1=0.05s, Fo/k=2, ζ=5% 
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6.2.3 Example “blast action”

• Test  

• Modelling option 1

Within a simplified modelling approach, it is assumed that the
slab remains elastic during loading. Sought is the maximum de-
flection of the slab due to the explosion.

- Simplified system  

Cross-Section
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Mass:

Concrete ,

Stiffness

 (due to cracking!)

- Action  

- Equivalent modal SDoF system (see Section “Modelling”) 

Ansatz for the deformed shape:

(6.40)

 is by sure much 
shorter than the period 

 of the slab (see 
Equation (6.51)). There-

fore, the excitation can be 
considered as short.

m 3.05 0.276 2.45⋅ ⋅ 2.06t m⁄= =

fc' 41.4MPa= Ec 5000 fc'⋅ 32172MPa= =

Io 3050 2763⋅( ) 12⁄ 5344 6×10 mm4= =

EcIo 171.9kNm2=

EcI 0.30EcIo 52184kNm2= =

t1 0.3ms≈

Tn 64ms=

ψ C1 βx( )sin⋅ C2 βx( )cos⋅ C3 h βx( )sin⋅ C4 h βx( )cos⋅+ + +=
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Boundary conditions:

 ,  ,  , (6.41)

By means of the mathematics program “Maple” Equation (6.40)
can be solved for the boundary conditions (6.41) and we get:

(6.42)

with

(6.43)

The shape of the function  is:  

And with the equations given in Section “Modelling”, the modal
properties of the equivalent SDoF system are determined:

(6.44)

ψ 0( ) 0= ψ L( ) 0= ψ' 0( ) 0= ψ'' L( ) 0=

1.508 ψ⋅ βx( )sin h βx( )sin– βL( )sin h βL( )sin+[ ] βx( )cos h βx( )cos–[ ]⋅
βL( )cos– h βL( )cos–

------------------------------------------------------------------------------------------------------------------+=

βL 3.927=

ψ

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/L [-]

�
 [-

]

m* m ψ2 xd⋅ ⋅
0

L
	 0.439mL= =
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(6.45)

(6.46)

For this example, the modal properties characterizing the equiv-
alent modal SDoF system are:

(6.47)

(6.48)

(6.49)

(6.50)

(6.51)

The maximum elastic deformation of the SDoF system can be
calculated using the modal pulse as follows:

(6.52)

The initial velocity of the free vibration is:

(6.53)

The maximum elastic deflection is:

(6.54)

k* EI ψ''( )2 xd⋅ ⋅( )
0

L
	 104.37 EI

L3
------⋅= =

P* p ψ xd⋅ ⋅( )
L1=1.55m

L2=3.45m
	 0.888 Ptot⋅= =

m* 0.439 2.06 5⋅ ⋅ 4.52t= =

k* 104.37 52184
53

---------------⋅ 43571kN/m= =

P* 0.888 192000⋅ 170496kN= =

ω k* m*⁄ 43571 4.52⁄ 98.18rad/s= = =

Tn 2π ω⁄ 0.064s= =

I* 0.5 P* t0⋅ ⋅ 0.5 170496 0.3 3–×10⋅ ⋅ 25.6kNs= = =

v0
I*

m*
------- 25.6

4.52
---------- 5.66m/s= = =

Δm e, v0 ω⁄ 5.66 98.18⁄ 0.058m= = =
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• Modelling option 2

Within a simplified modelling approach, it is assumed that the
slab remains elastic during loading. Sought is the maximum de-
flection of the slab due to the explosion.

- Simplified system  

- Equivalent modal SDoF system (see Section “Modelling”) 

Ansatz for the deformed shape:

(6.55)

Boundary conditions:

 ,  ,  , (6.56)

The shape of the function  is:  

ψ 2πx
L

----------� �
� �sin–=

ψ 0( ) 0= ψ L( ) 0= ψ'' 0( ) 0= ψ'' L( ) 0=

ψ
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And with the equations given in Section “Modelling”, the modal
properties of the equivalent SDoF system are determined:

(6.57)

(6.58)

(6.59)

For this example, the modal properties characterizing the equiv-
alent modal SDoF system are:

(6.60)

(6.61)

(6.62)

(6.63)
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 [-
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m* m ψ2 xd⋅ ⋅
0

L
	 0.5mL= =

k* EI ψ''( )2 xd⋅ ⋅( )
0

L
	 8π4 EI

L3
------⋅ 779.27 EI

L3
------⋅= = =

P* p ψ xd⋅ ⋅( )
L1=6.55m

L2=8.45m
	 0.941 Ptot⋅= =

m* 0.5 2.06 10⋅ ⋅ 10.3t= =

k* 779.27 52184
103

---------------⋅ 40666kN/m= =

P* 0.941 192000⋅ 180672kN= =

ω k* m*⁄ 40666 10.3⁄ 62.83rad/s= = =
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(6.64)

The maximum elastic deformation of the SDoF system can be
calculated using the modal pulse as follows:

(6.65)

The initial velocity of the free vibration is:

(6.66)

The maximum elastic deflection is:

(6.67)

Tn 2π ω⁄ 0.10s= =

I* 0.5 P* t0⋅ ⋅ 0.5 180672 0.3 3–×10⋅ ⋅ 27.1kNs= = =

v0
I*

m*
------- 27.1

10.3
---------- 2.63m/s= = =

Δm e, v0 ω⁄ 2.63 62.83⁄ 0.042m= = =

Course “Fundamentals of Structural Dynamics” An-Najah 2013

6 Forced Vibrations Page 6-28 

• Modelling option 3

As a third option, the slab is modelled using the commercial finite
element software SAP 2000.

- Numerical Model 

The distributed load  is replaced by  concentrated forc-
es :

(6.68)

The first period of the system is:

(6.69)

which corresponds to Equation (6.64).

q n 19=
Fi

Fi
192000

19
------------------ 10105kN= =

T1 0.100s=
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And the time-history of the elastic deflection is:  

The effect of the higher modes can be clearly seen!

• Comparison  

System [t] [kN/m] [P] [s] [m]

4.52 43571 0.888 0.064 0.058

10.30 40666 0.941 0.100 0.042
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7 Seismic Excitation

7.1 Introduction

The equation of motion for a base point excitation through an ac-
celeration time-history  can be derived from the equilibrium
of forces (see Section 2.1.1) as:

(7.1)

where ,  and  are motion quantities relative to the base point
of the SDoF system, while  is the spring force of the system
that can be linear or nonlinear in function of time and space. The
time-history of the motion quantities ,  and  for a given SDoF
system are calculated by solving Equation (7.1).
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From the previous figure it can be clearly seen that the time-his-
tory of an earthquake ground acceleration can not be described
by a simple mathematical formula. Time-histories are therefore
usually expressed as sequence of discrete sample values and
hence Equation (7.1) must therefore be solved numerically.

The sample values of the ground acceleration  are known
from beginning to end of the earthquake at each increment of
time  (“time step”). The solution strategy assumes that the mo-
tion quantities of the SDoF system at the time  are known, and
that those at the time  can be computed. Calculations start
at the time  (at which the SDoF system is subjected to
known initial conditions) and are carried out time step after time
step until the entire time-history of the motion quantities is com-
puted, like e.g. the acceleration shown in the figure on page 7-1.

-2

-1

0

1

2

9.5 9.6
Zeit [s]

x g
 [m

/s
2 ] 

-2

-1

0

1

2

9.5 9.6
Zeit [s]

x  
 [m

/s
2 ] 

t t+Δt

Δüg

Δü

Time [s]

ü
ü

u··g t( )

Δt
t

t Δt+
t 0=



Course “Fundamentals of Structural Dynamics” An-Najah 2013

7 Seismic Excitation Page 7-3 

7.2 Time-history analysis of linear SDoF systems 

In the case of a linear SDoF system Equation (7.1) becomes:

(7.2)

and by introducing the definitions of natural circular frequency
 and of damping ratio , Equation (7.1)

can be rearranged as:

(7.3)

The response to an arbitrarily time-varying force can be comput-
ed using:

• Convolution integral ([Cho11] Chapter 4.2)
• Numerical integration of the differential equation of motion

([Cho11] Chapter 5)

mu·· cu· ku+ + mu··g–=

ωn k m⁄= ζ c 2mωn( )⁄=

u·· 2ζωnu ωn
2u+ + u··g–=
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7.2.1 Newmark’s method (see [New59])

• Incremental formulation of the equation of motion

(7.4)

 ,  , (7.5)

• Assumption of the acceleration variation over the time step: 

(7.6)

(7.7)

(7.8)

mΔu·· cΔu· kΔu+ + mΔu··g–=

ut Δt+ ut Δu+= u·t Δt+ u·t Δu·+= u··t Δt+ u··t Δu··+=

u·· τ( ) 1
2
--- u··t u··t Δt++( ) u··t Δu··

2
-------+= =

u· τ( ) u·t u·· τ( ) τd
t

τ

	+ u·t u··t Δu··
2

-------+� �
� � τ t–( )+= =

u τ( ) ut u· τ( ) τd
t

τ

	+ ut u·t u··t Δu··
2

-------+� �
� � τ t–( )+ τd

t

τ

	+= =
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(7.9)

The increments of acceleration, velocity and displacement dur-
ing the time step are:

(7.10)

(7.11)

(7.12)

Introducing the parameters  and  into Equations (7.11) and
(7.12) for  and , respectively, can be generalized as follows:

(7.13)

(7.14)

where different values of the parameters  and  correspond to
different assumptions regarding the variation of the acceleration
within the time step:  

Average Acceleration:

 , 

u τ( ) ut u·t τ t–( ) u··t Δu··
2

-------+� �
� � τ t–( )2

2
-----------------+ +=

Δu·· u··t Δt+ u··t– Δu··= =

Δu· u·t Δt+ u·t– u··t Δu··
2

-------+� �
� �Δt= =

Δu u·t Δt u··t Δu··
2

-------+� �
� �Δt2

2
--------+=

γ β
Δu· Δu

Δu· u··t γΔu··+( )Δt=

Δu u·t Δt u··t 2βΔu··+( )Δt2

2
--------+=

γ β

β 1
4
---= γ 1

2
---=

Δt
T
----- ∞≤
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It is important to note that the “average acceleration”-method is
unconditionally stable, while the “linear acceleration”-method is
only stable if the condition  is fulfilled.

However, the “linear acceleration”-method is typically more ac-
curate and should be preferred if there are no stability concerns.
For a discussion on stability and accuracy of the Newmark’s
methods see e.g. [Cho11] and [Bat96].

• Solution of the differential equation: Option 1

Substituting Equations (7.13) and (7.14) into Equation (7.4)
gives Equation (7.15), which can be solved for the only remain-
ing variable :

(7.15)

or in compact form:

(7.16)

Substituting  into Equations (7.11) and (7.12) gives the incre-
ments of the velocity  and of the displacement . In conjunc-
tion with Equation (7.5), these increments yield the dynamic re-
sponse of the SDoF system at the end of the time step .

Linear Acceleration:

 , β 1
6
---= γ 1

2
---=

Δt
T
----- 0.551≤

Δt T⁄ 0.551≤

Δu··

m cγΔt kβΔt2+ +( )Δu·· mΔu··g– c u··t Δt– k u·t Δt u··t Δt2

2
--------+� �

� �–=

m̃Δu·· Δp̃=

Δu··
Δu· Δu

t Δt+
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• Solution of the differential equation: Option 2

Equation (7.14) can be transformed to:

(7.17)

and substituting Equation (7.17) into (7.13) we obtain:

(7.18)

Substituting Equations (7.17) and (7.18) into Equation (7.4)
gives Equation (7.19), which can be solved for the only remain-
ing variable :

(7.19)
or in compact form:

(7.20)

Substituting  into Equations (7.18) and (7.17) gives the incre-
ments of the velocity  and of the acceleration . In conjunc-
tion with Equation (7.5), these increments yield the dynamic re-
sponse of the SDoF system at the end of the time step .

For linear systems we have:
• ,  and  are constant throughout the whole time-history.
•  in Equation (7.15), as well as  in Equation (7.20), are also

constant and have to be computed only once.

Δu·· Δu
βΔt2
----------- u·t

βΔt
---------– u··t
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------–=

Δu· γΔu
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--------- γ u·t

β
------- Δt 1 γ
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------–� �
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k m
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----------- γc
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---------+ +� �
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βΔt
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β
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� � u·t m
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Δu
Δu· Δx··
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m c k
m̃ k
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7.2.2 Implementation of Newmark’s integration scheme
within the Excel-Table “SDOF_TH.xls”

Equation (7.15) is implemented in the Excel-Table as follows:

• In the columns C to E the so-called “predictors” dd, dv and da
are computed first:

 (“delta-displacement”)

 (“delta-velocity”)

(“delta-acceleration”)

• Afterwards, in the columns F to H the ground motion quantities
at the time step  are computed by means of so-called
“correctors:

m cγΔt kβΔt2+ +( )

meq

Δu··

da

mΔu··g–

ΔF t( )
c

u··t Δt

dv
– k

u·t Δt u··t Δt2

2
--------+� �

� �

dd

–=� 
 
 
 � 
 
 
 � � � � � � � � � � � 
 
 � 
 
 �

dd u·t Δt u··t Δt2

2
--------+=

dv u··t Δt=

da
mΔu··g– c dv⋅– k dd⋅–
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------------------------------------------------------ Δu··= =

t Δt+

u··t Δt+ u··t da+=

u·t Δt+ u·t dv da γ Δt⋅ ⋅( )++=
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 �
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ut Δt+ ut dd da β Δt2⋅ ⋅( )++=
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Δu



Course “Fundamentals of Structural Dynamics” An-Najah 2013

7 Seismic Excitation Page 7-9 

• Finally, in column I the absolute acceleration  at the time
step  is computed as follows:

Observations about the use of the Excel-Table

• Only the yellow cells should be modified:
• The columns A and B contain the time vector and the ground ac-

celeration  at intervals ; for this ground motion the re-
sponse of a Single-Degree-of-Freedom (SDoF) system will be
computed. To compute the response of the SDoF system for a dif-
ferent ground motion , the time and acceleration vector of the
new ground motion have to be pasted into columns A and B. 

• For a given ground motion , the response of a linear SDoF
system is only dependent on its period  and its damp-
ing . For this reason, the period  and the damping  can be cho-
sen freely in the Excel-Table.

• The mass  is only used to define the actual stiffness of the SDoF
system  and to compute from it the correct spring force

. However,  is not needed in any of the presented plots,
hence the defaults value  can be kept for all computations.

• In the field “Number of periods” (cell V19) one can enter the
number of periods  for which the response of the SDoF is to be
computed in order to draw the corresponding response spectra. 

• The response spectra are computed if the button “compute re-
sponse spectra” is pressed. The macro pastes the different pe-
riods  into cell S3, computes the response of the SDoF system,
reads the maximum response quantities from the cells F6, G6,
H6 and I6 and writes these value into the columns L to P.

u··abs
t Δt+

u··t Δt+
abs u··t Δt+ u··t Δt+

g+=

u··g t( ) Δt

u··g t( )

u··g t( )
T 2π ωn⁄=

ζ T ζ

m
k m ωn

2⋅=
fs k u⋅= fs

m 1=

Ti

Ti
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7.2.3 Alternative formulation of Newmark’s Method.

The formulation of the Newmark’s Method presented in Section
7.2.1 corresponds to an incremental formulation. It is possible to
rearrange the methodology to obtain a total formulation.

The equation of motion at the time  can be written as:

(7.21)

where

(7.22)

(7.23)

Using the expressions for  and  given by Equations (7.17)
and (7.18), the acceleration and the velocity at the time 
can be written as:

(7.24)

(7.25)

Introducing Equations (7.24) and (7.25) into Equation (7.21) and
solving for the only unknown   we obtain:

(7.26)

where:

t Δt+

m u··t Δt+ c u·t Δt+ k ut Δt++ + m u··t Δt+
g–=

u··t Δt+ u··t Δu··+=

u·t Δt+ u·t Δu·+=

Δu·· Δu·
t Δt+

u··t Δt+ 1
βΔt2
----------- ut Δt+ ut–( ) 1

βΔt
--------- u·t– 1

2β
------ 1–� �
� � u··t–=

u·t Δt+ γ
βΔt
--------- ut Δt+ ut–( ) 1 γ

β
---+� �

� � u·t Δt 1 γ
2β
------–� �

� � u··t+ +=

ut Δt+

k ut Δt+⋅ pt Δt+=
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(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

This formulation corresponds to the implementation of New-
mark’s method presented in [Cho11].

k k a1+=

pt Δt+ m u··t Δt+
g– a1 ut a2 u·t a3 u··t+ + +=

a1
m

βΔt2
----------- γc

βΔt
---------+=

a2
m

βΔt
--------- γ

β
--- 1–� �
� � c+=

a3
1

2β
------ 1–� �
� �m Δt γ

2β
------ 1–� �
� � c+=
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7.3 Time-history analysis of nonlinear SDoF systems

• Strength  of the nonlinear SDoF system

(7.32)

•  = force reduction factor
•  = maximum spring force  that a linear SDoF system of the

same period  and damping  would experience if submitted to
the same ground motion 

• Maximum deformation  of the nonlinear SDoF system

, hence (7.33)

•  = yield displacement
•  = displacement ductility

 , fy
fel
Ry
------= μΔ

um
uy
------=

fy

fy
fel
Ry
------

kel uel⋅
Ry

------------------= =

Ry

fel fs
T ζ

u··g

um

um μΔ uy⋅= μΔ um uy⁄=

uy

μΔ
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7.3.1 Equation of motion of nonlinear SDoF systems

In the equation of motion for a base point excitation through an
acceleration time-history  

(7.34)

of a nonlinear SDoF system, the spring force  is no longer
constant and varies in function of time and location.

Most structural components are characterised by a continuously
curved force-deformation relationship like the one shown by
means of a thin line on the right of the figure on page 7-12, which
however is often approximated by a bilinear curve (thick line in
the same figure).

When the loading of the nonlinear SDoF system is cyclic, then 
is no longer an unambiguous function of the location  and also
for this reason Equation (7.34) shall be solved incrementally.

For this reason  must be described in such a way, that
starting from a known spring force  at the time , the still
unknown spring force  at the time  can eas-
ily be computed.

This description of the cyclic force-deformation relationship is
known as hysteretic rule. In the literature many different hyster-
etic rules for nonlinear SDoF systems are available (See e.g.
[Saa91]).

In the following section a few hysteretic rules are presented and
discussed.

u··g t( )

mu·· cu· fs u t( , )+ + mu··g–=

fs u t( , )

fs
u

fs u t( , )
fs u t( , ) t

fs x Δu+ t Δt+( , ) t Δt+
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7.3.2 Hysteretic rules

The next figure shows typical hysteretic rules (or models) for
nonlinear SDoF systems.  
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In the following the often used Takeda hysteretic model is dis-
cussed in some detail.

The Takeda model was first described in [TSN70] and later mod-
ified by various authors. The assumed force-deformation rela-
tionship shown in the following figure was derived from the mo-
ment-curvature relationship described in [AP88].  

The initial loading follows the bilinear force-deformation relation-
ship for monotonic loading mentioned in the previous section.
The exact definition of this so-called skeleton curve depends on
the structural element at hand. For example, in the case of Re-
inforced Concrete (RC) structural walls the elastic stiffness 
corresponds to 20 to 30% of the uncracked stiffness, while the
plastic stiffness  is approximated assuming an hard-
ening factor .

Large amplitude cycles
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Unloading occurs along a straight line with stiffness . This un-
loading stiffness is computed by means of Equation (7.35) as a
function of the elastic stiffness  and taking into softening ef-
fects in proportion of the previously reached maximum displace-
ment ductility . The parameter  controls the unloading stiff-
ness reduction and varies from structural element to structural
element.

, (7.35)

Reloading follows a straight line which is defined by the force re-
versal point  and the point A. The location of point A is de-
termined according to the figure on the previous page as a func-
tion of the last reversal point B, the plastic strain  and the dam-
age influence parameter . The parameter  allows taking into
account softening effects occurring during the reloading phase.

Again, in the case of RC walls meaningful parameters  and 
lay in the following ranges:  and .

These rules, which are valid for cycles with large amplitude, are
typically based on observations of physical phenomena made
during experiments.

On the other hand, rules for small amplitude cycles are based on
engineering considerations rather than on exact observations.
They are designed to provide reasonable hysteresis lops during
an earthquake time-history, thus avoiding clearly incorrect be-
haviours like e.g. negative stiffnesses.

The rules for small amplitude cycles are shown on the right of the
figure on the previous page. 

ku

kel

μΔ α

ku
+ kel max μΔ

+{ }( ) α–⋅= ku
- kel max μΔ

-{ }( ) α–⋅=

urev 0( , )

ξp
β β

α β
α 0.2…0.6= β 0.0… 0.3–=
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If a reloading phase starts from a force reversal point  lay-
ing between the two extreme force reversal point  and

, then reloading does no longer occurs towards point A,
but towards a newly calculated point X, which lies between
points A and B. The position of point X is calculated using the
auxiliary variables  and  defined in Equation (7.36).

, (7.36)

When a load reversal occurs before point X is reached, a new
point C is defined as a temporary maximum and minimum. The
reloading in the subsequent cycles, which are smaller than the
temporary maximum and minimum is then always in the direc-
tion of point C.

These rules for cycles with a small amplitude are a simplification
of those described in [AP88], however they lead to very satisfac-
tory results and can be programmed very easily and efficiently.

urev 0( , )
urec

+ 0( , )
urec
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x+ x-

x+ urev urec
+–
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- urec
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-------------------------
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βξp
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-------------------------
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-⋅=
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7.3.3 Newmark’s method for inelastic systems

The Newmark’s numerical method discussed in Sections 7.2.1
to 7.2.3 can be easily modified for application to nonlinear sys-
tems. The following modifications are required:

• The mass  and the damping  are typically constant through-
out the whole time-history.

• The stiffness  changes during the time-history, hence , re-
spectively , are no longer constant.

• If the stiffness changes within the time step iterations are need-
ed (e.g. Newton-Raphson).

• For nonlinear systems the second solution strategy presented
in Section 7.2.1 (Option 2) has the advantage that the factors

 and 

on the RHS of Equation (7.19) are constant throughout the
whole time-history and do not need to be recomputed at every
time step.

Remark

For the actual implementation of the nonlinear version of New-
mark’s time stepping method, it is suggested to use the formula-
tion presented in Section 7.4.4 in conjunction with the Newton-
Raphson algorithm described in Section 7.4.3.

m c

k m̃
k

a m
βΔt
--------- γc

β
-----+� �

� �= b m
2β
------ Δt 1 γ

2β
------–� �

� � c–=
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7.3.4 Example 1: One-storey, one-bay frame 

 ,  ,  , (7.37)

• Parameters 
Columns k [kN/m] T [s] fy [MPa] Vy [kN] Vy/Vel [-] Δy [cm]
HEA 100 141 3.75 595 39.5 1.00 28.1
HEA 100 141 3.75 298 19.8 0.50 14.0
HEA 100 141 3.75 149 9.9 0.25 7.0
HEA 100 141 3.75 99 6.6 0.167 4.7
HEA 220 2181 0.95 543 246.7 1.00 11.3
HEA 220 2181 0.95 272 123.4 0.50 5.7
HEA 220 2181 0.95 136 61.7 0.25 2.8
HEA 220 2181 0.95 91 41.1 0.167 1.9
IPE 550 27055 0.27 185 411.4 1.00 1.52
IPE 550 27055 0.27 93 205.7 0.50 0.76
IPE 550 27055 0.27 43 102.9 0.25 0.38
IPE 550 27055 0.27 31 68.6 0.167 0.25

k 2
12EIs

H3
--------------⋅= T 2π m

k
----= Vy 2

My
H 2⁄
-----------⋅= Δy

Vy
k

------=
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• Frames with ,  subjected to “El Centro”  T 3.75s= ζ 5%=
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• Frames with ,  subjected to “El Centro”  T 0.95s= ζ 5%=
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• Frames with ,  subjected to “El Centro”  T 0.27s= ζ 5%=
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7.3.5 Example 2: A 3-storey RC wall

As a second example, the behaviour of the RC wall WDH4 pre-
sented in Section 7.6.3 is simulated. Wall WDH4 is actually a 3-
DoF system and its behaviour is simulated by means of an equiv-
alent SDoF system. For this reason the relative displacement of
the SDoF system shall be multiplied by the participation factor

 to obtain an estimation of top displacement of WDH4.

To simulate the behaviour of WDH4 a nonlinear SDoF system
with Takeda hysteretic model is used. The parameter used to
characterise the SDoF system are:

, , , ,
, (7.38)

where  is the damping rate,  is the natural frequency of the
SDoF system for elastic deformations (i.e. with ), and 
is the force reduction factor. The parameters given in (7.38) were
subsequently adjusted to obtain the best possible match be-
tween the simulation and the experiment. In a first phase, a cal-
culation using a linear SDoF system is performed. The latter has
the same damping rate and natural frequency as the Takeda
SDoF system and allows an estimation of the maximum elastic
spring force  and of the maximum elastic deformation . The
yield force  and the yield displacement  of the Takeda SDoF
system are then estimated using the force reduction factor  as
follows:

(7.39)

Γ̃ 1.291=

ζ 5%= fn 1.2Hz= Ry 2.5= ro 0.03=
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ζ fn
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Time-history of the top displacement

The time-history of the top displacement (see below) shows that:
(i) plastic phenomena affect the behaviour of the wall WDH4 sig-
nificantly, and that (ii) the Takeda-SDoF System is able can de-
scribe the global behaviour of the wall WDH4 quite accurately.
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Hysteretic behaviour of the nonlinear SDoF System

Force-deformation relationship of the Takeda-SDoF System
subjected to the same ground motion as Wall WDH4. In both di-
agrams the same curve is plotted: On the left in absolute units
and on the right in normalised units.  
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7.4 Solution algorithms for nonlinear analysis 
problems

In this section the more general case of system with multiple de-
grees of freedom is discussed. SDoF system can be seen as a
special case thereof.

7.4.1 General equilibrium condition

The general equilibrium condition for elastic and inelastic static
and dynamic systems is:

(7.40)

In this equation  is the time-dependent vector of the internal
forces of all DoFs of the structure and  the time-dependent
vector of the external forces.

The vector  depends on the problem analysed and is known.

7.4.2 Nonlinear static analysis

For linear-elastic systems the internal forces can be computed
by means of Equation (7.41):

 (7.41)

where  is the vector of the displacements of the DoF and  is
the stiffness matrix of the structure. Equation (7.40) can there-
fore be rewritten as

(7.42)

F t( ) R t( )=

F t( )
R t( )

R t( )

F KU=

U K

KU R=
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In Equation (7.42)  is known and  is also known, therefore
the unknown vector  can be computed by means of Equation
(7.43):

(7.43)

The equilibrium condition of Equation (7.40) can only be solved
for linear-elastic systems by means of Equation (7.43).

For inelastic systems, due to successive yielding of the struc-
ture, the stiffness matrix  is not constant over the course of the
loading. 

For this reason Equation (7.40) must be solved in increments
(=small load steps) and iteratively. The approach is as follows:

• The nodal displacements  at the time  are known from the
previous load step;

• The nodal displacements  at the end of the load step 
are determined by means of  iterations of Equations (7.44)
and (7.45).

(7.44)

(7.45)

where:

(7.46)

and  is the tangent stiffness matrix of the structure.

R K
U

U K 1– R=

K

Ut t

Ut Δt+ Δt
n

Kt Δt+ i 1–
T ΔUi ΔRt Δt+ i 1–=

Ut Δt+ i Ut Δt+ i 1– ΔUi+=

ΔRt Δt+ i 1– R Ft Δt+ i 1––
t Δt+

=

KT
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The actual solution of the equilibrium conditions of Equation
(7.40) is often obtained by the numerical method for the iterative
solution of nonlinear equations that was originally developed by
Newton.

In the next section the so-called Newton-Raphson Algorithm for
the solution of Equation (7.40) will be discussed.

7.4.3 The Newton-Raphson Algorithm

The Newton-Raphson Algorithm allows the solution of the load-
ing of nonlinear springs with the following equilibrium condition:

(7.47)

 represents the internal spring force, which is a
given nonlinear function of . The external force  is a
function of the time .

For a system with 1 DOF the solution method of the Newton-
Raphson Algorithm can be illustrated by the figure on page 7-29. 

The algorithm consists of the following steps:

0) Up to time step  a solution was obtained and at time step t
the system is in equilibrium with ;

1) The initial conditions at the beginning of the iteration are de-
termined. The iteration commences with the nodal displace-
ment, the tangent stiffness and the internal force that have
resulted at the end of the previous time step . The external
initial loading increment  within the time step is de-
termined by Equation (7.51).

F U t( )( ) R t( )=

F U t( )( ) R t( )=
U t( ) R t( )

t

t
Ut Rt( , )

t
ΔRt Δt+ 0
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Displacement: (7.48)

Tangent stiffness: (7.49)

Internal force: (7.50)

External force: (7.51)

2) Computation of the ith-displacement increment  by
means of Equation (7.52) (i starts from 1).
For systems with more DoFs,  is a matrix (tangent
stiffness matrix) and Equation (7.52) is best solved by means
of a -decomposition of the matrix .

(7.52)

3) Computation of the displacement  at the end of the ith-
iteration

(7.53)

4) Computation of the internal force  and the new external
force (residual force) 

(7.54)

5) If  and/or  are so small that they can be neglected:
Continue with Step 7;

6) Determine the new tangent stiffness  and repeat from
Step 2;

7) If the analysis time has not yet ended, start a new time step
and start again the procedure at Step 1.

Ut Δt+ 0 Ut=

Kt Δt+ 0
T Kt T=

Ft Δt+ 0 Ft=

ΔRt Δt+ 0 R Ft Δt+ 0–
t Δt+

=

ΔUi

Kt Δt+ i 1–
T

LDLT Kt Δt+ i 1–
T

Kt Δt+ i 1–
T ΔUi ΔRt Δt+ i 1–=

Ut Δt+ i

Ut Δt+ i Ut Δt+ i 1– ΔUi+=

Ft Δt+ i

Rt Δt+ i

ΔRt Δt+ i R Ft Δt+ i–
t Δt+
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ΔUi ΔRt Δt+ i

Kt Δt+ i
T
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Comments on the Newton-Raphson Algorithm

• The Newton-Raphson Algorithm for systems with several or
many DoFs follows exactly the same procedure as the algo-
rithm for SDoF systems. Only difference: Scalar values are re-
placed by the corresponding vectorial quantities.

• Apart from the Newton-Raphson Approach (“Full Newton-
Raphson iteration”) the “Modified Newton-Raphson iteration”
is often applied. This algorithm is illustrated on page 7-30.

• Unlike in the Newton-Raphson Algorithm, in the Modified Newton-
Raphson Algorithm the tangent stiffness matrix  is updated only
at the beginning of the time step and is kept constant over all the
iterations within this time step.

• To reach the target displacement  more iterations are re-
quired for the Modified Newton-Raphson Algorithm than for the
Full Newton-Raphson Algorithm. However, these can be comput-
ed more quickly since assembling the tangent stiffness matrix 
(Step 6) and in particular its -decomposition (Step 2) are
only required at the beginning of a time step and not at each itera-
tion within the time step. This is particularly advantageous for sys-
tems with many DoFs.

• In most FE-analysis programs both Newton-Raphson Algo-
rithms as well as other algorithms are typically combined in a
general solver in order to obtain a successful convergence of
the iteration process for many structural analysis problems. 

• Other algorithms for the solution of the equilibrium conditions
can be found in Chapters 8 (static analysis) and 9 (dynamic
analysis) of [Bat96].

KT

Ut Δt+

KT
LDLT
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Convergence criteria

• A in-depth discussion of the convergence criteria can be found
in [Bat96] and [AEM86]. This section provides only a short
overview.

• In Step 5) criteria are required in order to decide whether con-
vergence of the iteration was obtained. Possible convergence
criteria can be based on displacements, force or energy con-
siderations. 

• Since within the time step the unknown target displacement
 needs to be determined, it makes sense to prescribe that

the target displacement is reached within a certain tolerance
interval. For this reason a possible displacement criterion for
the convergence is:

(7.55)

where  is the displacement convergence tolerance.

• The vector  is actually unknown and must therefore be ap-
proximated. Typically  is used in conjunction with a suffi-
ciently small value of .

• It is important to note that in some cases – although the criteria de-
scribed by Equation (7.55) is satisfied – the wanted target dis-
placement  has not been reached. 

• This is the case when the computed displacements vary only
slightly during one iteration but these small increments are repeat-
ed over many iterations.

• Such a situation can result when the modified Newton-Raphson
Algorithm is used (see page 7-30).

Ut Δt+

ΔUi

Ut Δt+
------------------- εD≤

εD

Ut Δt+

Ut Δt+ i

εD

Ut Δt+
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• For this reason the displacement criterion is typically used in con-
junction with other convergence criteria.

• A force criterion, which checks the residual forces, is given in
Equation (7.56).

(7.56)

 is the force convergence tolerance, which checks the mag-
nitude of the residual force after the ith-iteration against the first
load increment of the time step.

• As for the displacement criterion, this force criterion should not be
applied on its own because in some cases the target displacement

 may not have been reached. This may happen for systems
with small post-yield stiffness.

• The energy criterion in Equation (7.57) has the advantage
that it checks the convergence of the displacements and the
forces simultaneously. 

(7.57)

 is the energy convergence tolerance, which checks the
work of the residual forces of the ith-iteration against the work
of the residual forces of the first load increment of the time
step.
Choosing the tolerances ,  or  too large, can yield wrong
results, which can lead to the divergence of the solution in the
following load steps.

R Ft Δt+ i–
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R Ft–
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R Ft–
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Choosing the tolerances ,  or  too small, results in an un-
necessary increase of the required iteration steps. The in-
creased accuracy is typically not useful.
For numerical reasons it can also happen that too small con-
vergence tolerances do not allow to reach convergence at all.
For strongly inelastic systems it is recommended to check
the sensitivity of the results to the chosen convergence
criteria and the chosen tolerances. 

7.4.4 Nonlinear dynamic analyses

Similar to Equation (7.44) the equilibrium condition for nonlinear
dynamic analyses is:

(7.58)

(7.59)

For base excitation by means of ground accelerations the vector
of the external forces is computed according to Equation (7.60).

(7.60)

where  is the mass matrix of the structure,  the norm vector
with entries of unity for all DoFs in the direction of the excitation
and  the ground acceleration at the time .

For this type of excitation the differential equation of motion
(7.58) has to be integrated numerically and – due to the inelas-
tic behaviour of the system – the equation must be solved itera-
tively and incrementally. 

εD εF εE

M U··
t Δt+ i

C U·
t Δt+ i

Ft Δt+ i 1– Kt Δt+ i 1–
T ΔUi+( )+ + Rt Δt+=

Ut Δt+ i Ut Δt+ i 1– ΔUi+=

Rt Δt+ M– 1 at Δt+
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M 1
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g t Δt+
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The numerical time integration of Equation (7.58) is often per-
formed by means of the Newmark’s Algorithms ([New 59]). Ac-
cording to these algorithms the displacement vector at the time

 is estimated as follows:

(7.61)

(7.62)

From Equation (7.61):

(7.63)

Substituting Equation (7.63) into (7.62):

(7.64)

The expressions for the displacement, the velocity and the acceler-
ation at the time  from Equations (7.59), (7.64) and (7.63) can
be substituted into the differential equation of motion (7.58) which
can then be solved for the only remaining unknown :

(7.65)
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or in a more compact format:

(7.66)

Equation (7.66) corresponds exactly to Equation (7.44) and is
also solved iteratively by the Newton-Raphson Algorithm.

When dynamic analyses are carried out, typical convergence
criteria also consider the inertia forces and, if present, damping
forces. Possible, often used convergence criteria are:

(7.67)

(7.68)

with

(7.69)

As alternative, depending at which point during the iteration proc-
ess convergence is checked, both criteria can be rewritten as:

(7.70)

(7.71)

As for static analyses, different convergence criteria exist also
for dynamic analyses and a discussion of these can also be
found in [Bat96].
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7.4.5 Comments on the solution algorithms for nonlinear
analysis problems

• Contrary to the analysis of elastic systems, the analysis of in-
elastic systems is often interrupted before the targeted load or
deformation state is reached. 

• This situation arises if in one of the time steps convergence cannot
be reached. 

• Typical causes for the failing convergence
• The convergence tolerances are too small or too large;
• The chosen values for the parameters of the solution algorithm are

not appropriate;
• The solution algorithm is not suitable.

Typical example: If special measures are not taken, the algorithms
of the Newton family are not able to solve a system with a global
negative post-yield stiffness;

• Apart from the algorithms by Newmark, many other algorithms
have been developed for solving the differential equation of
motion (7.58) (e.g. “Houbolt Method”, “Wilson θ Method”, “α-
Method”). These methods are described in detail in [Bat96].
The “α-Method” allows to introduce numerical damping, which
can be useful. The “α-Method” is described in detail in
[HHT77].

• Choice of the time step  for static analyses:
• For static analyses the time  has no physical meaning. For this rea-

son the size of the time step  can be chosen almost arbitrarily.
• As long as the algorithm converges and the variation of the exter-

nal loads is captured correctly, the size of the time step  has only
a minor influence on the results.

Δt

t
Δt

Δt
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• However, when geometric nonlinearities are considered or when
the constitutive laws are a function of the strain history, care should
be taken also for static analyses when choosing the size of the
time step.

• The time step size influences the convergence of the algorithm:
For small  the algorithm converges more quickly; however, more
steps are required.

• Time steps of a variable size can be advantageous. If the system
is elastic or almost elastic, large times steps can be chosen. If the
system is close to its capacity, small time steps should be chosen.

• Certain analysis programs (see for example [HKS03]) determine
the time step size within chosen limits as a function of the conver-
gence and the number of required iterations. 

• Choice of the time step  for dynamic analyses
• The objective of the dynamic analyses is the solution of the differ-

ential equation of motion (7.58) between the time  and the time
. For this reason the choice of the time step  plays always

an important role regarding the accuracy of the solution.
• The accuracy of the integration of the differential equation of mo-

tion (7.58) depends on the chosen time-integration algorithm and
on the ratio given by Equation (7.72), where  are the natural pe-
riods of the system. To capture the motion components due to
higher modes the time step  has therefore to be reduced.

(7.72)

• Certain time-integration algorithms can become instable if the time
step size  is too large.

Δt

Δt

t
t Δt+ Δt

Tn

Δt

Δt
Tn
------
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• An in-depth discussion on the accuracy of time-integration meth-
ods and on so-called “conditionally stable” integration methods
can be found in [Bat96].

• Example:
The time-integration method by Newmark with  and

 (linear variation of the acceleration over the length of the
time step, see Section 7.2.1) is only stable if the criterion given in
Equation (7.73) is met for all natural periods  of the system. For
systems with many DoFs, higher modes can be especially prob-
lematic and a very short time step is generally required when this
time-integration method is used.

(7.73)

• For this reason the “unconditionally stable” time-integration algo-
rithm by Newmark with  and  is often used in
seismic engineering.

γ 1 2⁄=
β 1 6⁄=

Tn

Δt
Tn
------ 0.551≤

γ 1 2⁄= β 1 4⁄=
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7.4.6 Simplified iteration procedure for SDoF systems with
idealised rule-based force-deformation relationships

In the case that the hysteretic behaviour is described by a se-
quence of straight lines, a so called “idealized rule-based force-
deformation relationships” like the Takeda model presented in
Section 7.3.2, it is possible to avoid implementing a Newton-
Raphson Iteration strategy. In this case adjustments are needed
in the case of:

• Stiffness change during loading
• Velocity reversal
• Transition between unloading an reloading.

In first case a secant stiffness can be iteratively computed until
the target point lays on the backbone curve, while in the second
and third case it is often enough to reduce the size of the time
step to limit error. These strategies are shown in the following fig-
ure: 
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7.5 Elastic response spectra

7.5.1 Computation of response spectra

• Response spectra are used to represent the seismic demand
on structures due to a ground motion record and design spec-
tra are used for the seismic design of structures.

• Response spectra shall be computed for all periods and
damping rates likely to be found in structures.

• Unless specified otherwise, the response spectra presented in
the following belongs to the north-south component of the May
18, 1940 “El Centro” Earthquake (see [Cho11]).

• Additional ground motion records can be downloaded for free
from:
1) http://db.cosmos-eq.org/scripts/default.plx
2) http://peer.berkeley.edu/nga/
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• “El Centro”: Linear response spectra  
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• Limits of response spectra  
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7.5.2 Pseudo response quantities

• Pseudo-velocity 

(7.74)

-  has units of a velocity

-  is related to the peak value of the strain energy 

(7.75)

• Pseudo-acceleration

(7.76)

-  has units of an acceleration

-  is related to the peak value of the base shear 

(7.77)
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• True vs. Pseudo response quantities  

• For  are acceleration and pseudo-acceleration identical.
• For  the pseudo-velocity tends to zero.
• Pseudo-velocity and pseudo-acceleration match well the true mo-

tion of a SDOF system with  and 
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• Remarks on the Pseudo-acceleration 

• For :
• For : At :  however 

Shift of the location of the maxima through damping

(7.78)
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• Combined D-V-A spectra
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7.5.3 Properties of linear response spectra  

• Response spectra typically show spectral regions where the re-
sponse is sensitive to different motion quantities, i.e. they show an
acceleration sensitive region (small periods), a displacement
sensitive region (large periods) and a velocity sensitive region
laying in between.
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7.5.4 Newmark’s elastic design spectra ([Cho11]) 
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• Newmark’s elastic design spectra  

Median(50%) One sigma (84%)
Damping 

2% 2.74 2.03 1.63 3.66 2.92 2.42
5% 2.12 1.65 1.39 2.71 2.30 2.01

10% 1.64 1.37 1.20 1.99 1.84 1.69
20% 1.17 1.08 1.01 1.26 1.37 1.38
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• Elastic design spectra according to SIA 261 (Art. 16.2.3)  

• Ground class A: firm or soft rock with a maximum soil cover of 5m
• Ground class B: deposit of extensive cemented gravel and sand

with a thickness >30m.
• Ground class C: deposits of normally consolidated and unce-

mented gravel and sand with a thickness >30m.
• Ground class D: deposits of unconsolidated fine sand, silt and

clay with a thickness >30m.
• Ground class E: alluvial surface layer of GC C or D, with a thick-

ness of 5 to 30m above a layer of GC A or B.
• Ground class F: deposits of structurally-sensitive and organic

deposits with a thickness >10m.
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• Displacement elastic design spectra according to SIA 261 

• The displacement spectra are computed from the acceleration
spectra using equation (7.79)

(7.79)

• Displacement spectra are an important design tool (even within
force-based design procedures) because they allow a quick esti-
mate of the expected deformations, hence of the expected dam-
age.
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• Elastic design spectra according to SIA 261 (linear)  
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• Elastic design spectra: Newmark vs. SIA 261 

• The SIA 261 spectra, like the spectra of the majority of the stand-
ards worldwide, were defined using the same principles as New-
mark’s spectra.

• However, different ground motion were used:
- SIA 261 takes into account different ground classes;
- Different seismic sources were considered;
- A larger number of ground motions was considered.

• Note: in SIA 261 the corner period  is not defined.
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7.5.5 Elastic design spectra in ADRS-format (e.g. [Faj99])
(Acceleration-Displacement-Response Spectra)

Periods T correspond to lines running through the origin of the
axes, because:

and after reorganizing:
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• Elastic design spectra in ADRS-format 

• Design spectra are defined based on averaged response spectra.
For this reason, the spectral values of single response spectra
may differ significantly from the design spectra.

• This is a crucial property of design spectra and should be
kept in mind during design!
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7.6 Strength and Ductility

7.6.1 Illustrative example

Comparison of the time history analyses of an elastic and an in-
elastic single-degree-of-freedom system (SDOF system): 

Where:

: Force reduction factor (7.80)

: Maximum restoring force that the elastic SDOF system
reaches over the course of the seismic excitation  (7.81)

: Yield force of the inelastic SDOF system (7.82)

: Displacement ductility (7.83)

: Maximum displacement that the inelastic SDOF system
reaches over the course of the seismic excitation  (7.84)

: Yield displacement of the inelastic SDOF system (7.85)

Telastic = Tinelastic
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• Results 
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• Comments
• Both inelastic SDOF systems show a stable seismic response.

Quantity Elastic SDOF Inela. SDOF Ry=2 Inela. SDOF Ry=6
T [s] 2.0 2.0 2.0
Fmax [kN] 134.70 67.35 22.45
Ry [-] – 2.0 6.0
uy [m] – 0.068 0.023
um [m] 0.136 0.147 0.126
μΔ [-] – 2.16 5.54
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7.6.2 “Seismic behaviour equation”

For seismic collapse prevention, the following approximate rela-
tionship applies

(7.86)

To survive an earthquake different combination of strength and
ductility are possible:  

″quality″ of seismic behaviour strength ductility×≈

F
ΔΔ
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• More realistic representation of the decision possibilities  

• If the strength of the structure reduces, the stiffness typically re-
duces too.

• If the masses do not change significantly (which is typically the
case), the fundamental period T of the softer structure is longer.

• Structures with a longer fundamental period T are typically sub-
jected to larger deformations, i.e., the deformation demand is larg-
er.

F
ΔΔ
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7.6.3 Inelastic behaviour of a RC wall during an earthquake   

• Moment-curvature-relation-
ship at the base of the plas-
tic hinge zone.

• Despite reaching and ex-
ceeding its elastic limit the
wall did not collapse.

• The plastic deformation ca-
pacity of structures can real-
ly be taken into account for
seismic design purposes.
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7.6.4 Static-cyclic behaviour of a RC wall 

Wall WSH6 [DWB99]
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• Hysteretic behaviour of the RC wall under static-cyclic loading 

Plastic region of test unit WSH6 (left) and close-up of the left boundary region (right). Both pho-
tos were taken at displacement ductility 6.
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7.6.5 General definition of ductility  

• Comments
• The ductility capacity is a property of the structural member.
• The ductility demand is a result of the seismic excitation and also

a function of the dynamic properties of the structure.
• A structural member survives the earthquake if:

• The structural member fractures when locally the deformation ca-
pacity of the structural materials (i.e., their strain capacities) are
reached. The ductility capacity is therefore exhausted.

Ductility demand 

Ductility capacity:

μ…
…m
…y
---------=

μ…
…u
…y
--------=

Ductility capacity Ductility demand≥
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7.6.6 Types of ductilities 

strain
ductility

curvature
ductility

rotation
ductility

displacement
ductility
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-----=
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7.7 Inelastic response spectra 
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Force reduction factor Ry   

0.1 1.0 10.0
Period [s]

1

10

R
y [

−]

μΔ=6

μΔ=4

μΔ=2

TA TB TC TD TE TF

Ry=μΔRy=(2μΔ-1)0.5

ζ = 5%

Ry 2μΔ 1–=Ry μΔ=

Course “Fundamentals of Structural Dynamics” An-Najah 2013

7 Seismic Excitation Page 7-70 

Displacement ductility   

• In the small period range, already small reductions of the elastic
strength of the SDOF system yield very large ductility demands.

• If the ductility demand is very large, it can be difficult to provide the
structure with a sufficiently large ductility capacity. This problem will be
further discussed during the design classes.

• Also in the large period range – where the “equal displacement princi-
ple” applies – large discrepancies between real and estimated ductility
demand can occur.

• The “equal displacement principle” and the “equal energy principle”
are “historical” Ry-μΔ-Tn relationships. In recent years a lot of research
has been done to come up with more accurate formulations (see e.g.
works by Krawinkler [KN92], Fajfar [VFF94], Miranda [Mir01], ...)
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7.7.1 Inelastic design spectra

• Inelastic design spectra in combined D-V-A format  

Note the new axes:  ,  , 

where:  = yield displacement
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• Newmark’s inelastic design spectra [NH82]  

• Maximum displacement of the SDOF system

• Yield strength of the SDOF system:
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Construction of the spectra using Ry-μΔ-Tn relationships

The inelastic design spectra are computed by means of Ry-μΔ-
Tn relationships:

(7.87)

(7.88)

It should be noted that:

(7.89)

• Ry-μΔ-Tn relationship according to [NH82]

(7.90)

Where: (7.91)
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• Inelastic design spectra according to [NH82] (log. x-axis)  
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• Inelastic design spectra according to [NH82] (linear x-axis)  
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• Ry-μΔ-Tn relationships according to [VFF94] 

In [VFF94] Ry-μΔ-Tn relationships are defined as follows: 

The parameters , ,  and  are defined as follows for 5%
damping:

and where the Q-hysteretic rule is a stiffness degrading rule sim-
ilar to the Takeda-hysteretic rule presented in Section 7.3.2.

The table shows the dependency of the Ry-μΔ-Tn relationships
both on damping and hysteretic model. 

(7.93)

Where: (7.94)

Corner period between the constant Spa and the
constant Spv regions

Model

Hysteresis Damping

Q Mass 1.0 1.0 0.65 0.30

Q Tangent stiffness 0.75 1.0 0.65 0.30

Bilinear Mass 1.35 0.95 0.75 0.20

Bilinear Tangent stiffness 1.10 0.95 075 0.20

Ry
c1 μΔ 1–( )

cR Tn
T0
------ 1+⋅ Tn T0≤

c1 μΔ 1–( )
cR 1+ Tn T0>

�




�




�

=

T0 c2 μΔ
cT Tc⋅ ⋅ Tc≤=

Tc =

c1 c2 cR cT

c1 cR c2 cT
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For the Q-hysteretic model and mass-proportional damping, the
Ry-μΔ-Tn relationships by [VFF94] specialise as: 

The spectra depicted on the following pages correspond to this
case.

(7.95)

Where: (7.96)

Corner period between the constant Spa and the
constant Spv regions

Ry
μΔ 1–( )

Tn
T0
------ 1+⋅ Tn T0≤

μΔ Tn T0> (ED principle)�


�


�

=

T0 0.65 μΔ
0.3 Tc⋅ ⋅ Tc≤=

Tc =
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• Inelastic design spectra according to [VFF94] 
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• Inelastic design spectra in ADRS-format
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7.7.2 Determining the response of an inelastic SDOF sys-
tem by means of inelastic design spectra in ADRS-
format

In this section the response of two example inelastic SDOF sys-
tems is determined by means of inelastic design spectra in
ADRS-format. 

• SDOF system 1 with Tn = 0.9 s
• SDOF system 2 with Tn = 0.3 s
• The spectra according to [VFF94] will be used (see Section 7.7.1)

• Example 1: SDOF system with Tn= 0.9 s  

• Response of the elastic SDOF system 1:

u

fs

umuy

fy kpl

kel

C

k

m
properties:

m = 100 t

kel = 4874 kN/m

kpl = 0 kN/m

ζ = 5%

fy = 80 kN

uy = 0.016 m

Tn 2π m
k
---- 2π 100

4874
------------ 0.9s= = =

Spa 2.62m/s2=
Sd 0.054m=
fel 261.7kN=
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• Response of the inelastic SDOF system 1:

 (From Equation (7.95) since )

Representation of the inelastic SDOF system 1 in the inelastic
design spectrum in ADRS-format: 

• If the force-deformation relationship of the inelastic SDOF system
is divided by its mass m, the “capacity curve” is obtained, which
can be plotted on top of the spectrum in ADRS-format.

• The capacity curve and the inelastic spectrum intersect in the “per-
formance point”.

Ry
fel
fy
----- 261.7

80
------------- 3.27= = =

μΔ Ry 3.27= = Tn Tc> 0.5s=
um uy μΔ⋅ 0.016 3.27⋅ 0.054m Sd= = = =

0.00 0.02 0.04 0.06 0.08 0.10 0.12
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• Example 2: SDOF system with Tn= 0.3 s  

• Response of the elastic SDOF system 2

In this second example two different inelastic SDOF systems will
be considered: (a) A SDOF system with a rather low fy and (b) a
SDOF system with a rather high fy.

• Response of the second inelastic SDOF system 2a

In this case the resulting displacement ductility  is so large, that
Equation (7.96)  results. After rearranging Equa-
tion (7.95), the displacement ductility  can be computed as:

u

fs

umuy

fy kpl

kel

C

k

m
properties:

m = 100 t

kel = 43‘865 kN/m

kpl = 0 kN/m

ζ = 5%

fy,a = 120 kN
uy,a = 0.0027 m

fy,b = 300 kN
uy,b = 0.0068 m

Tn 2π m
k
---- 2π 100

43865
--------------- 0.3s= = =

Spa 4.71m/s2=
Sd 0.011m=
fel 471kN=

Ry
fel
fy
----- 471

120
--------- 3.93= = =

μΔ
T0 Tc 0.5s= =

μΔ
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Check that :

The maximum displacement response is therefore:

Representation of the inelastic SDOF system 2a in the inelastic
design spectrum in ADRS-format:  

• Note that the line (*) is no longer vertical as in Example 1, but in-
clined according to the equation .

μΔ Ry 1–( )
Tc
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------ 1+⋅ 3.93 1–( ) 0.5
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------- 1+⋅ 5.88= = =

T0 Tc>
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Now consider the SDOF system 2b:

• Response of the inelastic SDOF system 2b

In this case the displacement ductility  will be such that Equation
(7.96) yields . To compute  insert therefore Equa-
tion (7.96) in Equation (7.95). This results in following expression:

(7.97)

Equation (7.97) needs to be solved numerically.

Check that :

The maximum displacement response is therefore:

Ry
fel
fy
----- 471

300
--------- 1.57= = =

μΔ
T0 Tc< 0.5s= μΔ

μΔ 1–( )
Tn

0.65 μΔ
0.3 Tc⋅ ⋅

---------------------------------- 1+⋅ Ry=

μΔ Tn( 0.3 Tc, 0.5 Ry, 1.57 ) 1.73= = = =

T0 Tc<

T0 0.65 μΔ
0.3 Tc⋅ ⋅ 0.65 1.730.3 0.5⋅ ⋅ 0.383s Tc<= = =

μΔ 1–( )
Tn
T0
------ 1+⋅ 1.73 1–( ) 0.3

0.383
------------- 1+⋅ 1.57 Ry= = =

um uy μΔ⋅ 0.0068 1.73⋅ 0.012m Sd>= = =
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Representation of the inelastic SDOF system 2b in the inelastic
design spectrum in ADRS-format:  

• Note that the curve (*) is no longer a straight line as in Examples
1 and 2a.

• In Example 2b the curve (*) needs to be computed numerically.
• In Example 2a the curve (*) is only an approximation of the curve

(*) in Example 2b. As soon as  both curves are identical.
In Example 2 this is the case if .

• When  (i.e. when ) the curve (*)2a predicts
larger maximum displacements  than curve (*)2b. The differ-
ence is, however, small. For this reason, in most cases Equation
(7.95) can be approximated as:
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(7.98)

This approximation is particularly satisfactory, if the large uncer-
tainties associated with smoothed spectra are considered. 

• Comments
• A discussion of similar examples can be found in [Faj99].
• For computing the response of inelastic SDOF systems by means

of inelastic design spectra, the Ry-μΔ-Tn relationships in Section
7.7.1 are sufficient. The spectra in ADRS-format are not absolutely
necessary, but they illustrate the maximum response of inelastic
SDOF systems very well.

• Ry-μΔ-Tn relationships should only be used in conjunction with
smoothed spectra. They should not be used to derive the inelastic
response spectra of a single ground motion

• Remember:  

- Design spectra are very useful tools to design structures for the expected 
seismic demand. Design spectra represent the average effect of an 
earthquake with design intensity.

- If a single earthquake is considered, the spectra may underestimate the 
seismic demand for a certain period range (... overestimate ...). 

- This characteristic of design spectra should be considered when design-
ing structures: The seismic design should aim at structures that are as 
robust as possible.

Ry
μΔ 1–( )

Tn
Tc
------ 1+⋅ Tn Tc≤

μΔ Tn Tc> (ED principle)�


�


�

=
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7.7.3 Inelastic design spectra: An important note

 

• Design spectra are a powerful tool to design structures to resist
the expected seismic action. On average, design spectra are
a good representation of the expected peak behaviour of struc-
tures.

• However, if single ground motions are considered, then it can
easily be the case that design spectra significantly underesti-
mate the expected peak behaviour of structures.

• This characteristic of the design spectra shall be taken into ac-
count during design by aiming at robust structures.

The “equal displacement” and the “equal energy”
principles represent a strong simplification of the real

inelastic behaviour of SDOF systems.
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7.7.4 Behaviour factor q according to SIA 261 

• Design spectra according to SIA 261 
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7.8 Linear equivalent SDOF system (SDOFe)  

It is postulated that the maximum response  of an inelastic
SDOF system can be estimated by means of a linear equivalent
SDOF system (SDOFe). The properties of the SDOFe are:

Stiffness: (7.99)

Damping: (7.100)

The differential equation of the SDOFe is: 

 with (7.101)

The question is how the viscous damping  of the SDOFe can
be determined so that .

u

fs

Elastic
(with elastic stiffness kel)

umuy

fy Inelastickpl

kel

-mug(t)..fs

u

cu.
mu..

ug(t)..

ug(t)
kel

keff

Elastic
(with „effective stiffness“
or „secant stiffness“ keff)fm

um

keff fm um⁄=

ζe

u·· t( ) 2ζeωeu· t( ) ωe
2u t( )+ + u··g t( )–= ωe

2 keff m⁄=

ζe
max u t( )( ) um=
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• Example: Inelastic SDOF system with Takeda-hyst. rule [TNS70]
The properties of the inelastic SDOF system are:

• Damping:  (constant, proportional to kel)
• Mass:
• Stiffness:
• Yield force:
• Hysteresis: Takeda-hysteresis with , ,   

The maximum response of the SDOF system when subjected to the NS-
component of the 1940 El Centro Earthquake is: 

 , 

The properties of the corresponding SDOFe are:

 , 

, the viscous damping  was determined iteratively!

ζ 5%=
m 100t=
kel 4874kN/m=
fy 80kN=

ro 0.05= α 0.5= β 0.0=

ku
+ kel max μΔ

+{ }( )
α–

=

ku
- kel max μΔ

-{ }( )
α–

=

xm 0.073m= fm 93.0kN=

keff
fm
um
------ 93.0

0.073
------------- 1274kN

m
-------= = = Te 2π m

keff
-------- 2π 100

1274
------------ 1.76s= = =

ζe 22.89%= ζe
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Comparison between inelastic SDOF and SDOFe  
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Comments regarding the example:

• The damping  is in general larger than the damping , since 
of the SDOFe needs to compensate for the hysteretic energy ab-
sorption of the inelastic SDOF system. 

• However, in rare cases it happens that . This shows again
the difficulties that are associated with the prediction of the seismic
response of inelastic SDOF systems.

• In the example, the viscous damping  was determined iteratively
until a value for  was found for which the response of the SDOFe
system was equal to the maximum response of the inelastic SDOF
system. Hence, if a method was available for estimating the vis-
cous damping , then the maximum response of the inelastic
SDOF system could indeed be estimated by means of the linear
equivalent SDOF system.

• The stiffness  and the period  of the SDOFe system are only
known once the maximum response of the inelastic SDOF system
are known. Section 7.8.2 shows how the equivalent viscous damp-
ing  can be estimated without knowing the stiffness  and the
period  of the SDOFe system a priori. 

• Estimating the damping 
In particular in the sixties significant research has been dedicated to es-
timating the damping  (see for example [Jac60], [Jen68] and [IG79]).
At that time the interest in linear equivalent systems was big because the
numerical computation of the response of inelastic systems was ex-
tremely expensive. The basic idea behind estimating the damping 
was: 

The inelastic SDOF system dissipates energy due to  and due to the
inelastic deformations, which are a function of its inelastic force-defor-
mation relationship. The equivalent SDOF system, however, dissipates
energy solely due to its viscous damping. For this reason the following
relationship applies:

ζe ζ ζe

ζe ζ<

ζe
ζe

ζe

keff Te

ζe keff
Te

ζe

ζe

ζe

ζ
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(7.102)

where  is the viscous damping equivalent to the hysteretic energy ab-
sorption of the inelastic system.

The simplest method for estimating the equivalent viscous damping is to
assume that the inelastic system and the linear equivalent system dissi-
pate the same energy within one displacement cycle. According to this
assumption [Cho11] defines the equivalent elastic damping as:

(7.103)

Where: 

The inelastic force-deformation relationship of many structural RC ele-
ments can be described by the “Takeda”-hysteresis rule. According to
Equation (7.103) the equivalent viscous damping of this hysteresis rule
is:

(7.104)

Where:  

: Energy dissipated by the inelastic SDOF system due to the ine-
lastic deformation of the system. The dissipated energy corre-
sponds to the area of the force-displacement hysteresis of the
considered displacement cycle;

: Potential energy of the equivalent SDOF system at maximum dis-
placement:

ζe ζ ζeq+=

ζeq

ζeq
1

4π
------

Ah
Ae
------⋅=

Ah

Ae

Ae
keff um

2⋅
2

--------------------=

ζeq,Tak
1

4π
------

fm fo+( )μΔuy f1u1 fmu2– fm fo+( )u3–+
fmμΔuy( ) 2⁄

-----------------------------------------------------------------------------------------------------⋅=
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The equivalent viscous damping of other important hysteresis rules is:  

Elasto-plastic (EP) rule:

(7.105)

Bilinear (BL) rule:

(7.106)

Rule according to Clough (Clo) [CP75]:

(7.107)

fm 1 ro μΔ 1–( )+[ ] fy⋅=
fo 1 ro–( ) fy⋅=

f1
u1

u1 u3+
----------------- f2⋅=

f2 1 ro μΔ 1–( ) 1 β–( )+[ ] fy⋅=
u1 μΔuy u2–=

u2
1 ro μΔ 1–( )+

μΔ
α–

---------------------------------- uy⋅=

u3 μΔ β μΔ 1–( )–[ ] uy⋅=

ζeq EP,
2
π
---

μΔ 1–
μΔ

---------------⋅=

ζeq BL,
2
π
---

μΔ 1–( ) 1 ro–( )
μΔ 1 roμΔ ro–+( )
------------------------------------------⋅=

ζeq Clo,
2
π
--- 3

2π
------

μΔ 1–
μΔ

---------------⋅ ⋅=
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- -relationship for these important hysteresis rules:  

The next figure compares the theoretical value for  for the Takeda-SDOF
(Equ. (7.104), ro=0.05, α=0.5, β=0) with the computed value (for El Centro):  
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Comments regarding the comparison of the theoretical value with the
computed value of  for the Takeda-SDOF system when excited by the
El Centro earthquake:

• The computed value of  was determined iteratively. Eight differ-
ent inelastic SDOF systems with different periods  were consid-
ered. The strength of each inelastic SDOF system was varied in
such a way that seven different displacement ductilities resulted
( =2 to 8).

• The results show that  is not only dependent on  but also on
the period  of the SDOF system. This effect is not considered by
Equations (7.103) and (7.104), respectively.

• In some cases the difference between the theoretical value and
the computed vale for  is considerable. For this reason there are
also considerable differences between  (target ductility)
and  (actual ductility obtained from the time-history analy-
sis of the SDOFe system with the viscous damping  according to
Equation (7.104)).

• Typically these differences increase as the target ductility increas-
es.

• Similar observations were made when the computation of the ine-
lastic spectra was discussed.

• This shows again the difficulties associated with the prediction of
the seismic response of inelastic SDOF system.

• Improved estimate for 
Over the last years some researchers suggested improved formulas for  by
carrying out statistical analyses of time-history responses of inelastic SDOF
systems (see [PCK07]). [GBP05] suggest for example the Equation (7.108).

where: (7.108)
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The constants  to  are:  

The hysteresis rules 1) to 6) were chosen because they can be used to
represent the hysteretic behaviour of typical structural types:

• Elasto-Plastic (EPP): Hysteretic rule that characterises systems
for the seismic isolation of structures (sliding systems that are
based on friction).

• Bilinear, ro=0.2 (BI): Hysteretic rule that also characterises sys-
tems for the seismic isolation of structures. The value of the post-
yield stiffness rokpl may vary significantly between different sys-
tems.

Hysteresis rule a b c d
1) Elasto-Plastic (EPP) 0.224 0.336 -0.002 0.250
2) Bilinear, ro=0.2 (BI) 0.262 0.655 0.813 4.890
3) Takeda Thin (TT) 0.215 0.642 0.824 6.444
4) Takeda Fat (TF) 0.305 0.492 0.790 4.463
5) Ramberg-Osgood (RO) 0.289 0.622 0.856 6.460
6) “Flag-Shaped”, β=0.35 (FS) 0.251 0.148 3.015 0.511

from [GBP05]

a d
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• Takeda Thin (TT): Hysteretic rule that characterises RC struc-
tures which lateral stiffness is provided by walls and columns.

• Takeda Fat (TF): Hysteretic rule that characterises RC structures
which lateral stiffness is provided by frames.

• Ramberg-Osgood (RO): Hysteretic rule that characterises ductile
steel structures.

• “Flag-Shaped”, β=0.35 (FS): Hysteretic rule that characterises
prestressed structures with unbonded tendons.

- -relationships for the most important hysteresis rules according to
[GBP05]: 

Important comments:

• With these relationships an in a statistical sense improved esti-
mate of the damping  is obtained.

• For single systems subjected to a specific ground motion differenc-
es between the maximum response of the inelastic system and the
maximum response of the equivalent SDOF with  according to
these improved - -relationships can still be significant!
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7.8.1 Elastic design spectra for high damping values

To compute the response of the equivalent SDOF systems, elas-
tic design spectra can be used.

The damping values of equivalent SDOFe systems are in gener-
al larger than the typical 5%. For this reason the design spectra
needs to be computed for higher damping values.

The design spectra for higher values of damping are often ob-
tained by multiplying the design spectra for 5% damping with a
correction factor : 

(7.109)

The literature provides different estimates for this correction fac-
tor . Two of these are: 

[TF99]:  where (7.110)

[BE99]:  where (7.111)

Equation (7.111) corresponds to Equation (29) in the Swiss
Code SIA 261 [SIA03].

The correction factors  obtained with Equ.s (7.110) and (7.111)
are plotted for different damping values  in the next figure:  

η

Spa Tn ζ( , ) η Spa Tn ζ 5%=( , )⋅=

η

η 1.5
1 10ζ+
------------------= 0.05 ζ 0.5≤ ≤

η 1
0.5 10ζ+
-----------------------= 0.05 ζ 0.3≤ ≤

η
ζ
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Comments:

• A discussion of the different approaches for computing the design
spectra for high values of damping can be found in [PCK07].

• Equations (7.110) and (7.111) were derived for ground motions
without near-field effects.

• Equations (7.110) and (7.111) were derived from the statistical
analysis of several response spectra for different ground motions.
For this reason Equ.s (7.110) and (7.111) should only be used in
conjunction with smoothed response or design spectra. 

• As for all statistical analyses the resulting design spectra corre-
spond only in average with the true highly damped spectral ordi-
nates. For single periods and ground motions the differences
between the highly damped spectral ordinates obtained by Equ.s
(7.110)/(7.111) and by time-history analyses of SDOF systems can
be significant. 
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• Elastic design spectra according to [BE99] 
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• Elastic design spectra in ADRS-format 

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Sd [m]

0.0

1.0

2.0

3.0

4.0

5.0

S
pa

 [m
/s

2 ]

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Sd [m]

0.0

1.0

2.0

3.0

4.0

5.0

S
pa

 [m
/s

2 ]

TB TC

TD

ζ = 5%

[TF99]
TB TC

TD

ζ = 5%

[BE99]

10%
20%

30%

10%
20%

50%
3040



Course “Fundamentals of Structural Dynamics” An-Najah 2013

7 Seismic Excitation Page 7-103 

7.8.2 Determining the response of inelastic SDOF systems
by means of a linear equivalent SDOF system and
elastic design spectra with high damping

The computation of the seismic response of inelastic systems by
means of linear equivalent systems was studied by Sozen and
his co-workers in the seventies (see for example [GS74], [SS76]
and [SS81]).

Today this approach gains new attention since the “Direct Dis-
placement-Based Design (DDBD)” approach, which was devel-
oped by Priestley and his co-workers, is based on the idea of the
linear equivalent system ([PCK07]).

This sections outlines the procedure for computing the response
of an inelastic SDOF system by means of an linear equivalent
SDOF system and elastic design spectra with high damping. 

• Example: SDOF system with Tn= 0.9 s  

For the example the spectra according to [BE99] will be used (Section 7.8.1).

u

fs

umuy

fy kpl

kel

C

k

m
Properties:

m = 100 t

kel = 4874 kN/m

kpl = 244 kN/m

ζ = 5%

fy = 80 kN

uy = 0.016 m

Takeda hysteresis
(α=0.5, β=0.0, ro=0.05)
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• Response of the elastic SDOF system

• Response of the inelastic SDOF system
The maximum response of the inelastic SDOF system will be com-
puted by means of the ADRS-spectra (page 7-106). 
Step 1: The capacity curve of the SDOF system is plotted on top
of the ADRS spectra.
Step 2: By means of Equ.s (7.102) and (7.104) the nonlinear
scale, which represents the damping  as a function of the maxi-
mum response of the SDOF system, is plotted along the capacity
curve.
Step 3: Several spectra for different values of damping are plotted. 
Step 4: The “Performance Point” is the point where the spectrum
with damping  intersects the capacity curve at the same value of

.
For the considered example the maxmimum response of the ine-
lastic SDOF system is:

Comments regarding the example:

• To determine the “Performance Point” exactly, an iterativ approach
is typically required.

• The linear equivalent SDOF system is fully defined by the period
 and the damping . The period  results from the slope of the

line that connects the origin with the “Performance Point”.

Tn 2π m
k
---- 2π 100

4874
------------ 0.9s= = =

Spa 2.62m/s2=
Sd 0.054m=

ζe

ζe
ζe

Sd 0.065m=

Te ζe Te
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• The damping values  used in the figures on page 7-106 were
determined according to Equation (7.104). In the figures on page
7-107 the damping  was determined using Equation (7.108).
The difference is, however, rather small.

• It should be noted that in both cases the computed maximum re-
sponse of the inelastic SDOF system does not comply with the
“equal displacement principle”.

• The linear equivalent SDOF system leads often to results that do
not agree with the “equal displacement principle”. This applies in
particular to SDOF systems with long periods or systems with
large ductility demands.

• A second example is presented on page 7-107. It is a SDOF sys-
tem with a shorter period and a smaller ductility demand than in
Example 1. In this second example the “equal displacement prin-
ciple” is approximately confirmed.

ζeq

ζeq
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Determining the SDOF behaviour by means of elastic ADRS-spectra  

Alternative representation:  
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Recalculate the example with  according to [GBP05]: 

Second example with smaller ductility demand:  

ζeq
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8  Multi Degree of Freedom Systems

8.1 Formulation of the equation of motion

8.1.1 Equilibrium formulation 

(8.1)

(8.2)

(8.3)

(8.4)

m1u··1 c1u·1 k1u1+ + f1 t( ) c2 u·2 u·1–( ) k2 u2 u1–( )+ +=

m2u··2 c2 u·2 u·1–( ) k2 u2 u1–( )+ + f2 t( )=�
�
�

m1u··1 c1 c2+( )u·1 c2u·2– k1 k2+( )u1 k2u2–+ + f1 t( )=

m2u··2 c2u·1– c2u·2 k2u1– k2u2+ + f2 t( )=�
�
�

m1 0

0 m2

u··1
u··2

c1 c2+( ) c2–

c2– c2

u·1

u·2

k1 k2+( ) k2–

k2– k2

u1

u2

+ +
f1 t( )

f2 t( )
=

Mu·· Cu· Ku+ + f t( )=
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8.1.2 Stiffness formulation  

• Stiffness matrix

 (8.5)

The degrees of freedoms are 
the horizontal displacements 

 and  at the level of the 
masses  and 

Unit displacement Unit displacement 

u1 u2
m1 m2

K
k11 k12

k21 k22

k1 k2+( ) k2–

k2– k2

= =

u1 1= u2 1=
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• Mass matrix 

(8.6)

• Equation of motion

(8.7)

(8.8)

8.1.3 Flexibility formulation  

• Flexibility matrix   

M

M
m1 0
0 m2

=

m1 0
0 m2

u··1
u··2

k1 k2+( ) k2–
k2– k2

u1

u2

+ 0
0

=

Mu·· Ku+ 0=

D
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By means of the principle of virtual forces the vertical displace-
ment  at location  due to a unit force  acting at location

 can be readily determined.

 with  and (8.9)

The flexibilty matrix consists of the following elemnts:

(8.10)

(8.11)

The  factors can be computed by means of Equation (8.9) as
follows:

(8.12)

(8.13)

(8.14)

(8.15)

and the flexibilty matrix  becomes:

(8.16)

Δ d F 1=
a

Δ α δ( , ) α– δ α2 δ2 1–+( ) FL3

6EI
---------⋅= α a

L
---= δ d

L
---=

u DF=

u1

u2

d11 d12

d21 d22

F1

F2

⋅=

dij

d11 Δ 1 3⁄ 2 3⁄( , ) 4
243
--------- L3

EI
------⋅= =

d12 Δ 2 3⁄ 2 3⁄( , ) 7
486
--------- L3

EI
------⋅= =

d21 Δ 1 3⁄ 1 3⁄( , ) 7
486
--------- L3

EI
------⋅= =

d22 Δ 2 3⁄ 1 3⁄( , ) 4
243
--------- L3

EI
------⋅= =

D

D L3

486EI
--------------- 8 7

7 8
⋅=
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• Stiffness matrix 

(8.17)

• Mass matrix 

(8.18)

• Equation of motion

(8.19)

(8.20)

8.1.4 Principle of virtual work

• See e.g. [Hum12]

8.1.5 Energie formulation

• See e.g. [Hum12]

K

K D 1– 162
5

--------- EI
L3
------ 8 7–

7– 8
⋅ ⋅= =

M

M
m1 0

0 m2

=

m1 0

0 m2

u··1
u··2

162
5

--------- EI
L3
------ 8 7–

7– 8
⋅ ⋅

u1

u2

+ 0
0

=

Mu·· Ku+ 0=
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8.1.6 “Direct Stiffness Method”

• Stiffness matrix of a beam element 

The stiffness matrix  of a beam element with constant flexural
and axial stiffness is well known:

(8.21)

(8.22)

If the axial elongation of the beam is not considered, the matrix
can be further simplified as follows:

K

F Ku=

F1

F2

F3

F4

F5

F6

EA
L

-------- 0 0 EA
L

--------– 0 0

0 12EI
L3

------------ 6EI
L2

--------- 0 12EI
L3

------------– 6EI
L2

---------

0 6EI
L2

--------- 4EI
L

--------- 0 6EI
L2

---------– 2EI
L

---------

EA
L

--------– 0 0 EA
L

-------- 0 0

0 12EI
L3

------------– 6EI
L2

---------– 0 12EI
L3

------------ 6EI
L2

---------–

0 6EI
L2

--------- 2EI
L

--------- 0 6EI
L2

---------– 4EI
L

---------

u1

u2

u3

u4

u5

u6

⋅=
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(8.23)

• Example: Cantilever  

Assemblage of the stiffness matrix

(8.24)

with 

K EI
L3
------

12 6L 12– 6L
6L 4L2 6L– 2L2

12– 6L– 12 6L–
6L 2L2 6L– 4L2

⋅=

F1

F2

F3

F4

EI
L3
------

12 12+ 6– L 6L+ 12– 6L
6– L 6L+ 4L2 4L2+ 6L– 2L2

12– 6L– 12 6L–
6L 2L2 6L– 4L2

u1

u2

u3

u4

⋅ ⋅=

L L 2⁄=

Course “Fundamentals of Structural Dynamics” An-Najah 2013

8 Multi Degree of Freedom Systems Page 8-8 

Equation of motion:

(8.25)

(8.26)

Static condensation:

(8.27)

(8.28)

mL 0 0 0
0 0 0 0

0 0 mL
2

-------- 0

0 0 0 0

u··1
u··2
u··3
u··4

⋅ EI
L3
------

24 0 12– 6L
0 8L2 6L– 2L2

12– 6L– 12 6L–
6L 2L2 6L– 4L2

u1

u2

u3

u4

⋅ ⋅+

0
0
0
0

=

mL 0 0 0

0 mL
2

-------- 0 0

0 0 0 0
0 0 0 0

u··1
u··3
u··2
u··4

⋅ EI
L3
------

24 12– 0 6L
12– 12 6L– 6L–
0 6L– 8L2 2L2

6L 6L– 2L2 4L2

u1

u3

u2

u4

⋅ ⋅+

0
0
0
0

=

mL 0 0 0

0 mL
2

-------- 0 0

0 0 0 0
0 0 0 0

u··1
u··3
u··2
u··4

⋅ EI
L3
------

24 12– 0 6L
12– 12 6L– 6L–
0 6L– 8L2 2L2

6L 6L– 2L2 4L2

u1

u3

u2

u4

⋅ ⋅+

0
0
0
0

=

mtt 0
0 0

u··t

u··0

⋅ ktt kt0

k0t k00

ut

u0

⋅+ 0
0

=
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(8.29)

From the second row of Equation (8.29) the following expression
can be derived:

(8.30)

Substituting Equation (8.30) in the first line of Equation (8.29) we
obtain:

(8.31)

(8.32)

and with :

(8.33)

 with (8.34)

Where  is the condensed stiffness matrix, and in our case it is
equal to:

(8.35)

mttu··t kttut kt0u0+ + 0=

k0tut k00u0+ 0=�
�
�

u0 k– 00
1– k0tut=

mttu··t kttut kt0k00
1– k0tut–+ 0=

mttu··t ktt kt0k00
1– k0t–( )ut+ 0=

kt0 k0t
T=

mttu··t ktt k0t
T k00

1– k0t–( )ut+ 0=

mttu··t k̂ttut+ 0= k̂tt ktt k0t
T k00

1– k0t–=

k̂tt

k̂tt
EI
L3
------ 24 12–

12– 12
0 6L
6– L 6– L

1
7L2
--------- 1

14L2
------------–

1
14L2
------------– 2

7L2
---------

0 6– L
6L 6– L

⋅ ⋅–

� �
� �
� �
� �
� �
� �

⋅=
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(8.36)

after substituting :

(8.37)

The final equation of motion of the cantilever is therefore:

(8.38)

• Notes

• The “Direct Stiffness Method” is often used in the Finite Element
Method.

• The derivation of the stiffness matrix  for a beam element and in-
structions for assembling the stiffness matrix of entire structures
can be found e.g. in the following references:

[Prz85] Przemieniecki J.S.: “Theory of Matrix Structural Analy-
sis”. Dover Publications, New York 1985.

[Bat96] Bathe K-J.: “Finite Element Procedures”. Prentice Hall, 
Upper Saddle River, 1996.

k̂tt
EI
L3
------ 6

7
--- 16 5–

5– 2
⋅ ⋅=

L L 2⁄=

k̂tt
EI
L3
------ 48

7
------ 16 5–

5– 2
⋅ ⋅=

mL
2

-------- 0

0 mL
4

--------

u··1
u··3

⋅ EI
L3
------ 48

7
------ 16 5–

5– 2

u1

u3
⋅ ⋅ ⋅+ 0

0
=

K
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8.1.7 Change of degrees of freedom

The equation of motion for free vibration of the 2-DoF system de-
picted in the following can be immediately set up if the DoFs 
and  are considered.

Using Equation (8.23), the equation of motion for free vibrations
of the system becomes

(8.39)

u1
θ1

3m
2

-------- 0

0 mL2

8
-----------

u··1
θ··1

⋅ EI
L3
------ 12 6L–

6L– 4L2

u1

θ1
⋅ ⋅+ 0

0
=
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or:

(8.40)

As an alternative, the motion of the system can be also expressed
in terms of the DoFs  and . To this purpose, the relationship
between the two sets of DoFs can be immediately written as:

(8.41)

which in matricial form yields the following system of equations:

 or (8.42)

The matrix  is called coordinate transformation matrix and can
be used to transform the mass matrix, the stiffness matrix and
the load vector from one set of DoF to the other, i.e.

(8.43)

(8.44)

(8.45)

M
u··1
θ··1

⋅ K
u1

θ1
⋅+ 0

0
=

u1 u2

u1 u1=

u2
L
2
--- θ1⋅=

�


�


�

u1

θ1

1 0
0 2 L⁄

A

u1

u2
⋅=

� 
 � 
 �

u Au=

A

K ATKA=

M ATMA=

F ATF=
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For the example at hand, the stiffness matrix  expressed in the
set of DoFs  and  becomes:

(8.46)

(8.47)

while the mass matrix  becomes:

(8.48)

(8.49)

which yields the equation of motion of the 2-DoF systems ex-
pressed in terms of the DoFs  and 

(8.50)

K
u1 u2

K ATKA 1 0
0 2 L⁄

EI
L3
------ 12 6L–

6L– 4L2
1 0
0 2 L⁄

⋅ ⋅ ⋅= =

K EI
L3
------ 12 12–

12– 16
⋅=

M

M ATMA 1 0
0 2 L⁄

3m
2

-------- 0

0 mL2

8
-----------

1 0
0 2 L⁄

⋅ ⋅= =

M

3m
2

-------- 0

0 m
2
----

=

u1 u2

3m
2

-------- 0

0 m
2
----

u··1
u··2

⋅ EI
L3
------ 12 12–

12– 16

u1

u2
⋅ ⋅+ 0

0
=
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8.1.8 Systems incorporating rigid elements with distribut-
ed mass

The 2-DoF system depicted in the following incorporates a rigid
element with distributed mass . 

The elements of the 2x2 mass matrix can be determined by
imparting a unit acceleration üa=1 to one degree of freedom
while keeping the acceleration of the other degree of free-
dom equal to zero (üb=0).

The resulting inertia forces are then applied as static forces
acting onto the system, and the elements of the mass matrix
are computed as the reactions to these static forces.

μ
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In the example at hand, if the DoFs  and  are considered,
the elements of the mass matrix can be easily computed as fol-
lows:

(8.51)

(8.52)

(8.53)

(8.54)

Hence the mass matrix becomes:

(8.55)

Due to the fact that the mass is distributed, off-diagonal terms
are present and therefore the mass matrix is coupled.

The stiffness matrix of the 2-DoF system can be easily computed
by means of the methods discussed so far as:

(8.56)

and the equation of motion of the system for free vibration be-
comes:

u1 u2

m11
2
3
---μL=

m21
1
3
---μL=

m12
1
3
---μL=

m22
2
3
---μL=

M μL
6

------- 2 1
1 2

⋅=

K EI
L3
------ 28 10–

10– 4
⋅=
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(8.57)μL
6

------- 2 1
1 2

u··1
u··2

⋅ ⋅ EI
L3
------ 28 10–

10– 4

u1

u2
⋅ ⋅+ 0

0
=
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9  Free Vibrations

9.1 Natural vibrations

(9.1)

Ansatz:

 where (9.2)

The double derivation of Equation (9.2) yields:

(9.3)

(9.4)

and by substituting Equations (9.2) and (9.4) in (9.1) we obtain:

(9.5)

Equation (9.5) is satisfied if , which is a trivial solution
meaning that there is no movement, because .
To obtain a nontrivial solution the term in brackets in Equation
(9.5) must be equal to zero, i.e.:

(9.6)

or:

 with (9.7)

Mu·· Ku+ 0=

u t( ) qn t( )φφn= qn t( ) An ωnt( )cos Bn ωnt( )sin+=

q··n t( ) ωn
2 An ωnt( )cos Bn ωnt( )sin+[ ]– ωn

2qn t( )–= =

u·· t( ) ωn
2qn t( )– φn=

ωn
2Mφn– Kφn+[ ]qn t( ) 0=

qn t( ) 0=
u t( ) qn t( )φφn 0= =

ωn
2M– K+[ ]φφn 0=

Aφn 0= A ωn
2M– K+=
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Also in the case of Equation (9.7), there is always the trivial so-
lution , which corresponds to an absence of movement.

If the matrix  has an inverse , then Equation (9.7) can be
rearranged as follows:

(9.8)

and therefore

(9.9)

This means that if matrix  has an inverse , then Equations (9.6)
and (9.7) have only the trivial solution given by Equation (9.9).

The inverse of Matrix  has the form:

(9.10)

If the determinant  is equal to zero, then the matrix is   singular
and has no inverse.

Therefore, Equation (9.6) has a nontrivial solution only if:

(9.11)

The determinant yields a polynomial of order  in  which is
called characteristic equation. The  roots of the characteris-
tic equation are called eigenvalues and allow the calculation of
the  natural circular frequencies  of the system.

φn 0=

A A 1–

A 1– Aφn A 1– 0=

φn 0=

A A 1–

A

A 1– 1
A
-------Â=

A

ωn
2M– K+ 0=

N ωn
2

N

N ωn
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As soon as the natural circular frequencies  are computed,
also the vectors  can be computed within a multiplicative con-
stant by means of Equation (9.6). There are  independent Vec-
tors which are called eigenvectors or natural modes of vibra-
tion of the system.

Summary

• A MDoF system with  degrees of freedom has  circular fre-
quencies  ( ) and  eigenvectors. Each ei-
genvector has  elements. The circular frequencies are
arranged in ascending order, i.e.: .

• Natural circular frequencies and eigenvectors are properties of
the MDoF system and depends only from its mass and stiff-
ness properties.

• The index  refers to the numbering of the eigenvectors and
the first mode of vibration ( ) is commonly referred to as
the fundamental mode of vibration.

ωn
φn

N

N N
ωn n 1 2 3 … N, , , ,= N

N
ω1 ω2 … ωn< < <

n
n 1=
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9.2 Example: 2-DoF system  

The equation of motion of the system corresponds to equation
(8.7):

(9.12)

9.2.1 Eigenvalues

The eigenvalues   are calculated from the determinant:

(9.13)

which gives a quadratic equation in 

(9.14)

We consider a regular 2-DoF 
oscillator with 

and 

m1 m2 m= =

k1 k2 k= =

m 1 0
0 1

u··1
u··2

k 2 1–
1– 1

u1

u2

+ 0
0

=

K ωn
2M–

2k ωn
2m– k–

k– k ωn
2m–

0= =

ωn
2

2k ωn
2m–( ) k ωn

2m–( )⋅ k–( ) k–( )⋅– m2ωn
4 3kmωn

2– k2+ 0= =
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and both solutions yield the following eigenvalues:

(9.15)

For each eigenvalue  we can now compute an eigenvector
and a natural circular frequency.

9.2.2 Fundamental mode of vibration

With the smallest eigenvalue  we obtain the

1. circular frequency (9.16)

By substituting this eigenvalue  into the system of equations

(9.17)

we obtain two independent equations that can be used to deter-
mine the elements of the first eigenvector . The first row of the
system yield the equation:

and (9.18)

and by substituting this into the second row we obtain:

ωn
2 3km 9k2m2 4k2m2–±

2m2
------------------------------------------------------------ 3 5±

2
---------------- k

m
----⋅= =

ωn
2

ω1
2 3 5–

2
---------------- k

m
----⋅=

ω1
3 5–

2
---------------- k

m
----⋅ 0.618 k

m
----= =

ω1
2

K ω1
2M–[ ]φφ1

2k 3 5–
2

---------------- k
m
----⋅� �

� �m– k–

k– k 3 5–
2

---------------- k
m
----⋅� �

� �m–

φ11

φ21

⋅ 0
0

= =

φ1

1 5+( )k
2

------------------------φ11 kφ21– 0= φ21
1 5+( )

2
---------------------φ11=
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(9.19)

As expected, the eigenvector is determined within a multiplica-
tive constant, and can therefore be arbitrarily normalized as fol-
lows:

• so that the largest element of the eigenvector is equal to 1
• so that one particular element of the eigenvector is equal to 1
• so that the norm of the eigenvector is equal to 1
• ...  

Fundamental mode:

kφ11– 1– 5+( )k
2

----------------------------- 1 5+( )
2

---------------------φ11� �
� �+ 0

kφ11– kφ11+ 0

φ11 φ11

=

=

=

“Degree of freedom”

“Mode”

ω1
3 5–

2
---------------- k

m
----⋅ 0.618 k

m
----= =

φ1
φ11

φ21

2
1 5+
----------------

1

0.618
1

= = =
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9.2.3 Higher modes of vibration

Additionally to the fundamental mode of vibration, the consid-
ered 2-DoF system has a second mode of vibration.

The properties of this second mode of vibration can be comput-
ed in analogy to the fundamental mode and the following results
are obtained:  

Second mode

“Degree of freedom”

“Mode”

ω2
3 5+

2
---------------- k

m
----⋅ 1.618 k

m
----= =

φ2
φ12

φ22

1

1 5–
2

----------------
1

0.618–
= = =
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9.2.4 Free vibrations of the 2-DoF system

According to Equation (9.2), the free vibration of the 2-DoF sys-
tem is:

(9.20)

(9.21)

The still unknown constants  to  can be computed using the
initial conditions given by Equation (9.24) and become:

, (9.22)

, (9.23)

Initial conditions: (9.24)

For an alternative methodology to compute the constants  to
 see Section 9.6.

u C1 ω1t( )cos C2 ω1t( )sin+[ ]φφ1 C3 ω2t( )cos C4 ω2t( )sin+[ ]φφ2+=

u1

u2

C1 ω1t( )cos C2 ω1t( )sin+[ ]
φ11

φ21

C3 ω2t( )cos C4 ω2t( )sin+[ ]
φ12

φ22

+

=

C1 C4

C1
φ22u1 φ12u2–

φ11φ22 φ21φ12–
--------------------------------------= C2

φ22v1 φ12v2–
φ11φ22 φ21φ12–( )ω1

-------------------------------------------------=

C3
φ11u2 φ21u1–

φ11φ22 φ21φ12–
--------------------------------------= C4

φ11v2 φ21v1–
φ11φ22 φ21φ12–( )ω2

-------------------------------------------------=

u1 0( ) u1=

u2 0( ) u2=

u·1 0( ) v1=

u·2 0( ) v2=�




�




�

C1
C4
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• Case 1: , ,    u1 0.618= u2 1.000= v1 v2 0= =
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• Case 2: , ,    u1 1.000= u2 0.618–= v1 v2 0= =
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• Case 3: , ,    u1 0.618= u2 0.000= v1 v2 0= =
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9.3 Modal matrix and Spectral matrix

All  eigenvalues and all  eigenvectors can be compactly rep-
resented in matricial form:

• Modal matrix

(9.25)

• Spectral matrix

(9.26)

Equation (9.6) can therefore be rearranged as follows:

(9.27)

and it is immediately apparent that the equation for all eigenval-
ues   and all eigenvectors can be expressed in terms of modal
and the spectral matrices, as follows:

(9.28)

N N

Φ φjn[ ]

φ11 φ12 … φ1N

φ21 φ22 … φ2N

… … … …
φN1 φN2 … φNN

= =

Ω2

ω1
2 0 … 0

0 ω2
2 … 0

… … … …
0 0 … ωN

2

=

Kφn Mφnωn
2=

KΦ MΦΩ2=
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9.4 Properties of the eigenvectors

9.4.1 Orthogonality of eigenvectors

The orthogonality conditions of the eigenvectors are:

 and  for  (9.29)

and can be proven by means of Equation (9.27). Equation (9.27)
is first to be set up for the eigenvector vector , and then pre-
multiplied with  on both sides:

(9.30)

Afterwards, Equation (9.30) shall be transposed making use of
the symmetry properties of the matrices  and : 

(9.31)

Now, Equation (9.27) shall be set up for the eigenvector vector
, and then pre-multiplied with  on both sides:

(9.32)

Equation (9.32) can now be subtracted from Equation (9.31)
yielding the following equation:

(9.33)

In the case that the eigenvalues are different, then for  we
have  and the expression  must be zero. In
the case that an eigenvalue occurs more than once, the eigen-

φn
TKφr 0= φn

TMφr 0= n r≠

n
φr

T

φr
TKφn ωn

2φr
TMφn=

KT K= MT M=

φn
TKφr ωn

2φn
TMφr=

r φn
T

φn
TKφr ωr

2φn
TMφr=

ωn
2 ωr

2–( )φφn
TMφr 0=

n r≠
ωn

2 ωr
2–( ) 0≠ φn

TMφr
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vectors are linearly independent and can be chosen so that they
are orthogonal (proof complicated).

So far we have shown that  for . By means of
Equation (9.32) we can prove also the  for . We
have already seen that for  the right hand side of Equation
(9.32) is equal to zero. For this reason also the left hand side of
Equation (9.32) must be equal to zero, which conclude the veri-
fication.

Example: 2-DoF system

In the following the orthogonality of the eigenvectors of the 2-
DoF system presented in Section 9.2 is checked:

• Relative to the mass matrix

(9.34)

(9.35)

(9.36)

φn
TMφr 0= n r≠

φn
TKφr 0= n r≠

n r≠

φ1
TMφ1

2
1 5+
---------------- 1 m 0

0 m

2
1 5+
----------------

1

⋅ ⋅ 2m 5 5+( )

1 5+( )
2

----------------------------- 1.382m≅= =

φ1
TMφ2

2
1 5+
---------------- 1 m 0

0 m

1

1 5–
2

----------------
⋅ ⋅ 0= =

φ2
TMφ1 1 1 5–

2
----------------

m 0
0 m

2
1 5+
----------------

1

⋅ ⋅ 0= =
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(9.37)

• Relative to the stiffness matrix

(9.38)

(9.39)

(9.40)

(9.41)

φ2
TMφ2 1 1 5–

2
----------------

m 0
0 m

1

1 5–
2

----------------
⋅ ⋅ m

2
---- 5 5–( ) 1.382m≈= =

φ1
TKφ1

2
1 5+
---------------- 1 2k k–

k– k

2
1 5+
----------------

1

⋅ ⋅ 2k 5 5–( )

1 5+( )
2

--------------------------- 0.528k≅= =

φ1
TKφ2

2
1 5+
---------------- 1 2k k–

k– k

1

1 5–
2

----------------
⋅ ⋅ 0= =

φ2
TKφ1 1 1 5–

2
----------------

2k k–
k– k

2
1 5+
----------------

1

⋅ ⋅ 0= =

φ2
TKφ2 1 1 5–

2
----------------

2k k–
k– k

1

1 5–
2

----------------
⋅ ⋅ k

2
--- 5 5+( ) 3.618k≈= =

Course “Fundamentals of Structural Dynamics” An-Najah 2013

9 Free Vibrations Page 9-16 

9.4.2 Linear independence of the eigenvectors

The eigenvectors are linearly independent. To prove this, it
needs to be shown that if

(9.42)

then all scalars  must be equal to zero.

To this purpose, we left-multiply Equation (9.42) by  and we
obtain: 

(9.43)

In Section 9.4.1 we have shown that , therefore
 meaning that the eigenvectors are linearly independent.

The property that the eigenvectors are linearly independent,
is very important because it allows to represent any dis-
placement vector as a linear combination of the eigenvec-
tors.

α1φ1 α2φ2 … αnφn+ + + 0=

αi

φi
TM

φi
TM α1φ1 α2φ2 … αnφn+ + +( ) φφi

TMφiαi 0= =

φi
TMφi 0≠

αi 0=
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9.5 Decoupling of the equation of motion

The equation of motion for free vibrations is 

(9.44)

and as a possible solution the displacement vector

(9.45)

can be assumed, where:

:  linearly independent eigenvectors of the system

:  modal coordinates

The displacement vector  and its double derivative 

(9.46)

can be substituted into Equation (9.44), and the latter can be left-
multiplied by  yielding the following equation:

(9.47)

Because of the orthogonality properties of the eigenvectors only
one term of the summations remains, i.e.: 

(9.48)

where:

Mu·· Ku+ 0=

u t( ) qi t( )φφi
i

=

φi

qi

u t( )

u·· t( ) q··i t( )φφi
i

=

φn
T

φn
TM q··i t( )φφi

i

� �
� � φn

TK qi t( )φφi
i

� �
� �+ 0=

φn
TMφnq··n t( ) φφn

TKφnqn t( )+ 0=
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Modal mass: (9.49)

Modal stiffness: (9.50)

and Equation (9.48) can be rewritten as follows:

(9.51)

For each  we can set up such an equation, which yields to 
decoupled Single Degree of Freedom systems. The total dis-
placement of the system can then be computes as the sum of
the contribution of all decoupled SDoF systems, i.e.:

(9.52)

in matricial form:

 with (9.53)

(9.54)

with

 and 

(9.55)

mn
* φn

TMφn=

kn
* φn

TKφn=

mn
*q··n t( ) kn

*qn t( )+ 0=

n N

u t( ) qi t( )φφi
i 1=

N


=

u t( ) ΦΦq t( )= q
q1 t( )

…
qN t( )

=

M*q·· K*q+ 0=

M* ΦTMΦ
m1

* … 0
… … …
0 … mn

*

= = K* ΦTKΦ
k1

* … 0
… … …
0 … kn

*

= =
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In Equations (9.52) and (9.53) are rewritten

(9.56)

the LHS and the RHS of the resulting equation can be pre-mul-
tiplied by  and we obtain:

(9.57)

Because of the orthogonality of the eigenvectors (see Section
9.4.1), Equation can be further simplified to:

(9.58)

which yields the following relationship between  and 

(9.59)

or introducing the definition of the modal mass given by Equation
(9.49) we obtain the equivalent expression

(9.60)

Equations (9.59) and (9.60) will be later used to compute the re-
sponse of MDoF systems.

u t( ) qi t( )φφi
i 1=

N


 Φq t( )= =

φn
TM

φn
TMu t( ) φφn

TMφiqi t( )

i 1=

N


=

φn
TMu t( ) φφn

TMφnqn t( )=

qn t( ) u t( )

qn t( )
φn

TMu t( )

φn
TMφn

-----------------------=

qn t( )
φn

TMu t( )

mn
*

-----------------------=
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Example: 2-DoF system

The modal masses and modal stiffness of the 2-DoF system of
Section 9.2 were already checked during the verification of the
orthogonality of the eigenvectors (See Equations (9.34), (9.37),
(9.38) and (9.41)). They are:

(9.61)

(9.62)

(9.63)

(9.64)

• First modal SDoF system:

(9.65)

(9.66)

 (9.67)

The natural frequency corresponds to equation (9.16) of this
chapter

m1
* φ1

TMφ1
2m 5 5+( )

1 5–( )
2

----------------------------- 1.382m≈= =

m2
* φ2

TMφ2
m
2
---- 5 5–( ) 1.382m≈= =

k1
* φ1

TKφ1
2k 5 5–( )

1 5–( )
2

--------------------------- 0.528k≅= =

k2
* φ2

TKφ2
k
2
--- 5 5+( ) 3.618k≈= =

m1
*q··1 t( ) k1

*q1 t( )+ 0=

1.382mq··1 t( ) 0.528kq1 t( )+ 0=

ω1
k1

*

m1
*

------- 0.528k
1.382m
------------------ 0.618 k

m
----= = =
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• Second modal SDoF system:

(9.68)

(9.69)

 (9.70)

The natural frequency corresponds to the result shown on page
9-7.

m2
*q··2 t( ) k2

*q2 t( )+ 0=

1.382mq··2 t( ) 3.618kq2 t( )+ 0=

ω2
k2

*

m2
*

------- 3.618k
1.382m
------------------ 1.618 k

m
----= = =
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9.6 Free vibration response

9.6.1 Systems without damping

The equation of motion for free vibration of a system without
damping is

(9.71)

and making use of the possibility of decoupling of the equation
of motion, the total deformation  under free vibration can be
computed as the sum of the contribution of all modes. The equa-
tion of motion of the nth decoupled SDoF system is:

(9.72)

and its solution can be computed as discussed in Chapter 3 for
SDoF systems. If we make use of the second formulation with
“trigonometric functions” (see Section 3.1.2), the solution is:

(9.73)

The the total deformation  under free vibration is hence

(9.74)

The  constants  and  can be computed by means of the
initial conditions  and . 

To this purpose, the vector of the velocity is needed and can
easily be computed by deriving Equation (9.74), i.e.:

Mu·· Ku+ 0=

u t( )

mn
*q··n t( ) kn

*qn t( )+ 0=

qn t( ) An ωnt( )cos Bn ωnt( )sin+=

u t( )

u t( ) φφiqi t( )
i 1=

N


 φi Ai ωit( )cos Bi ωit( )sin+[ ]
i 1=

N


= =

2 N⋅ Ai Bi
u 0( ) u0= u· 0( ) v0=
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(9.75)

Considering Equations (9.74) and (9.75) at the time , we
have.

 and (9.76)

Making use of Equation (9.59) we can now write the equations
to compute the initial conditions of the nth decoupled SDoF sys-
tem as:

(9.77)

(9.78)

In Section 3.1.2 (see Equation 3.18) it as been shown that the
constants  and  are equal to  and , respec-
tively, hence Equation (9.74) can be rewritten as:

(9.79)

u· t( ) φφiq·i t( )
i 1=

N


 φiωi A– i ωit( )sin Bi ωit( )cos+[ ]
i 1=

N


= =

t 0=

u 0( ) φφiqi 0( )
i 1=

N


= u· 0( ) φφiq·i 0( )
i 1=

N


=

qn 0( )
φn

TMu 0( )

φn
TMφn

------------------------=

q·n 0( )
φn

TMu· 0( )

φn
TMφn

------------------------=

An Bn qn 0( ) q·n 0( ) ωn⁄

u t( ) φφi qi 0( ) ωit( )cos
q·i 0( )

ωi
------------ ωit( )sin+

i 1=

N


=
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9.6.2 Classically damped systems

The equation of motion for free vibration of a system with damp-
ing is

(9.80)

As it will be shown in Chapter 10, if the MDoF system is classi-
cally damped, the equation of motion can be decoupled analo-
gously to system without damping, and the total deformation 
under free vibration can be computed again as the sum of the
contribution of all modes. The equation of motion of the nth de-
coupled SDoF system is:

(9.81)

or

(9.82)

where

 and , respectively. (9.83)

The solution of Equation (9.82) can be computed as discussed
in Chapter 3 for SDoF systems. According to Equation (3.50) we
have:

(9.84)

where:

Mu·· Cu·+ Ku+ 0=

u t( )

mn
*q··n t( ) cn

*q·n t( ) kn
*qn t( )+ + 0=

q··n t( ) 2ωnζnqn t( ) ωn
2qn t( )+ + 0=

cn
* φn

TCφn= ζn
cn

*

2mn
*ωn

-----------------=

qn t( ) e
ζωnt–

An ωndt( )cos Bn ωndt( )sin+[ ]=
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 “damped circular frequency of the nth mode”
(9.85)

The the total deformation  under free vibration is hence

(9.86)

As in the case of the undamped systems, the  constants 
and  can be computed by means of the initial conditions

 and . 

For the nth decoupled SDoF system according to Equation (3.51)
the constants  and  can be expressed in function of the in-
itial conditions of the modal coordinate  as follows:

(9.87)

(9.88)

where the initial displacement  and the initial velocity 
can be computed by means of Equations (9.77) and (9.78). 

Hence, the total displacement of a classically damped MDoF
system under free vibration can be computed as:

(9.89)

For nonclassically damped system see e.g. [Cho11], Chapter 14.

ωnd ωn 1 ζ2–=

u t( )

u t( ) φφiqi t( )
i 1=

N


 φie
ζωnt–

Ai ωidt( )cos Bi ωidt( )sin+[ ]
i 1=

N


= =

2 N⋅ Ai
Bi

u 0( ) u0= u· 0( ) v0=

An Bn
q

An qn 0( )=

Bn
q·n 0( ) ζωnqn 0( )+

ωnd
--------------------------------------------=

qn 0( ) q·n 0( )

u t( ) φφie
ζωnt–

qi 0( ) ωidt( )cos
q·i 0( ) ζωiqi 0( )+

ωid
----------------------------------------- ωidt( )sin+

i 1=

N


=
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10  Damping

10.1 Free vibrations with damping

The differential equation to compute the free vibrations of a
MDoF system is:

(10.1)

with the initial conditions:

 and (10.2)

The displacement vector  may be expressed as linear com-
bination of the eigenvectors, i.e. , and Equation
(10.1) becomes:

(10.3)

Equation (10.3) may be further multiplied by  yielding the fol-
lowing equations:

(10.4)

(10.5)

Definition:

• A system is classically damped if the matrix  is diagonal

• A system is non-classically damped if the matrix  is not di-
agonal

Mu·· Cu· Ku+ + 0=

u 0( ) u0= u· 0( ) v0=

u t( )
u t( ) ΦΦq t( )=

MΦq·· CΦq· KΦq+ + 0=

ΦT

ΦTMΦq·· ΦTCΦq· ΦTKΦq+ + 0=

M*q·· C*q· K*q+ + 0=

C*

C*
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10.2 Example 

The properties of the 2-DoF system are:

, (10.6)

, (10.7)

while the damping characteristics will be defined later.

• Natural frequencies and eigenvectors

The natural frequencies and the eigenvectors of the 2-DoF sys-
tem can be easily computed as:

Natural frequencies: , (10.8)

Eigenvectors: , (10.9)

m1 2m= m2 m=

k1 2k= k2 k=

ω1
k

2m
--------= ω2

2k
m
------=

φ1
1 2⁄

1
= φ2

1–
1

=



Course “Fundamentals of Structural Dynamics” An-Najah 2013

10 Damping Page 10-3 

10.2.1 Non-classical damping

The damping characteristics of the 2-DoF system are chosen as: 

, (10.10)

The equation of motion of the system can be easily assembled
by means of the equilibrium formulation:

(10.11)

It is now attempted to decouple the equations by computing the
modal properties of the 2-DoF system:

(10.12)

(10.13)

(10.14)

The Matrix  is not diagonal, hence it is not possible to decou-
ple the equations!

c1 c= c2 4c=

m 2 0
0 1

u··1
u··2

c 5 4–
4– 4

u·1

u·2

3 1–
1– 1

u1

u2

+ + 0
0

=

M* ΦTMΦ

1
2
--- 1

1– 1

2m 0
0 m

1
2
--- 1–

1 1
⋅ ⋅

3
2
---m 0

0 3m
= = =

K* ΦTKΦ

1
2
--- 1

1– 1

3k k–
k– k

1
2
--- 1–

1 1
⋅ ⋅

3
4
---k 0

0 6k
= = =

C* ΦTCΦ

1
2
--- 1

1– 1

5c 4c–
4c– 4c

1
2
--- 1–

1 1
⋅ ⋅

5
4
---c 7

2
---c

7
2
---c 17c

= = =

C*
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10.2.2 Classical damping

The damping characteristics of the 2-DoF system are chosen as: 

, (10.15)

The equation of motion of the system can be easily assembled
by means of the equilibrium formulation:

(10.16)

It is now attempted to decouple the equations by computing the
modal properties of the 2-DoF system:

, (10.17)

(10.18)

The Matrix  is diagonal, hence it is possible to decouple the
equations!

c1 4c= c2 2c=

m 2 0
0 1

u··1
u··2

c 6 2–
2– 2

u·1

u·2

3 1–
1– 1

u1

u2

+ + 0
0

=

M*

3
2
---m 0

0 3m
= K*

3k
4

------ 0

0 6k
=

C* ΦTCΦ

1
2
--- 1

1– 1

6c 2c–
2c– 2c

1
2
--- 1–

1 1
⋅ ⋅

3
2
---c 0

0 12c
= = =

C*
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10.3 Classical damping matrices

10.3.1 Mass proportional damping (MpD)

(10.19)

The damping constant of each mode of vibration is therefore:

(10.20)

and the corresponding damping ratio  becomes (see Section 3.2):

(10.21)

10.3.2 Stiffness proportional damping (SpD)

(10.22)

The damping constant of each mode of vibration is therefore:

(10.23)

and the corresponding damping ratio  becomes:

(10.24)

Remark

Both MpD and SpD, taken alone, are not a good approximation
of the behaviour of real structures. Studies have shown that dif-
ferent modes of vibration exhibit similar damping ratios.

C a0M=

cn
* a0mn

*=

ζn

ζn
cn

*

2ωnmn
*

-----------------
a0mn

*

2ωnmn
*

-----------------
a0

2ωn
---------= = =

C a1K=

cn
* a1kn

* a1ωn
2mn

*= =

ζn

ζn
cn

*

2ωnmn
*

-----------------
a1ωn

2mn
*

2ωnmn
*

-------------------
a1
2
-----ωn= = =
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10.3.3 Rayleigh damping

(10.25)

The damping constant of each mode of vibration is therefore:

(10.26)

and using the results for MpD and SpD damping ratio  be-
comes:

(10.27)

The coefficients  and  may be computed for vibration modes
 and  by means of equation (10.28):

(10.28)

In the case that , coefficients  and  can be com-
puted as follows:

(10.29)

C a0M a1K+=

cn
* a0mn

* a1kn
*+ a0 a1ωn

2+( )mn
*= =

ζn

ζn
a0

2ωn
---------

a1
2
-----ωn+=

a0 a1
i j

a0
2
----- 1

ωi
-----⋅

a1
2
----- ωi⋅+ ζi=

a0
2
----- 1

ωj
-----⋅

a1
2
----- ωj⋅+ ζj=

�




�




�

ζi ζj ζ= = a0 a1

a0 ζ
2ωiωj
ωi ωj+
-----------------⋅= a1 ζ 2

ωi ωj+
-----------------⋅=
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10.3.4 Example

A damping matrix shall be assembled so that in the case of the
2-DoF system shown on page 10-2 both modes of vibration are
characterised by the same damping ratio .

The natural frequencies are:

, (10.30)

hence the coefficients  and  become:

, (10.31)

yielding the damping matrix  equal to:

(10.32)

Check:

(10.33)

The damping matrix is indeed diagonal.

ζ

ω1
k

2m
--------= ω2

2k
m
------=

a0 a1

a0
4ζ
3

------ m
2k
------ k

m
----⋅ ⋅= a1

4ζ
3

------ m
2k
------⋅=

C a0M a1K+=

C 4ζ
3

------ m
2k
------

k
m
---- 2m 3k+⋅ 0 k–

0 k– k
m
---- m k+⋅

⋅ ⋅ 4ζ
3

------ mk
2

-------- 5 1–
1– 2

⋅ ⋅= =

C* ΦTCΦ
1
2
--- 1

1– 1

4ζ
3

------ mk
2

-------- 5 1–
1– 2

1
2
--- 1–

1 1
⋅ ⋅ ⋅ ⋅ ζ mk

2
-------- 3 0

0 12
⋅ ⋅= = =
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If we choose values for ,  and  so that

, , (10.34)

the coefficients  and  become:

, (10.35)

and the representation of the damping ratio in function of the nat-
ural circular frequency is:  

Remarks
- If there are more than 2 modes of vibrations, then not all of

them will have the same damping ratio.

- If more than 2 modes of vibrations should have the same
damping, then a different damping modal shall be used. To
this purpose see e.g. “Caughey-Damping” in [Cho11].

m k ζ

ω1 2rad s⁄= ω2 5rad s⁄= ζ 5%=

a0 a1

a0 14.287= a1 1.429=

4

5

6

7

8

9

10

m
pi

ng
 ra

tio
 ζ

n
[%

]

Mass proportional damping

Stiffness proportional damping

Rayleigh Damping

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10

D
am

Circular frequency ω
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11  Forced Vibrations

11.1 Forced vibrations without damping

11.1.1 Introduction  

Sought is the response of the 2-DoF system as a result of the ex-
ternal excitation force  given by Equation (11.1)

(11.1)

The equation of motion of the system is:

(11.2)

The displacement vector  can be represented as a linear
combination of the eigenvectors of the 2-DoF system,

, and Equation (11.2) becomes:

(11.3)

We can now multiply Equation (11.3) by  obtaining:

F t( )

F t( )
F1 t( )

F2 t( )
=

Mu·· t( ) Ku t( )+ F t( )=

u t( )

u t( ) ΦΦq t( )=

MΦq·· KΦq+ F t( )=

ΦT
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(11.4)

(11.5)

Where 

- : Diagonal matrix of the modal masses 

- : Diagonal matrix of the modal stiffnesses 

- : Vector of the modal forces 

For the considered 2-DoF system, Equation (11.5) can be rear-
ranged as:

(11.6)

or as alternative:

(11.7)

The two equations of the system (11.7) are decoupled and can
be solved independently. The constants resulting from the solu-
tion of the system can be determined by means of the initial con-
ditions  and .

ΦTMΦq·· ΦTKΦq+ ΦTF t( )=

M*q·· K*q+ F* t( )=

M* mn
*

K* kn
*

F* Fn
*

m1
*q··1 k1

*q1+ F1
*=

m2
*q··2 k2

*q2+ F2
*=�

�
�

q··1 ω1
2q1+

F1
*

m1
*

-------=

q··2 ω2
2q2+

F2
*

m2
*

-------=
�




�




�

u 0( ) u0= u· 0( ) v0=
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11.1.2 Example 1: 2-DoF system 

The properties of the 2-DoF system are:

, (11.8)

, (11.9)

, (11.10)

The external excitation is:

(11.11)

and the modal excitation force is calculated using the modal ma-
trix:

(11.12)

The system of equations becomes:

m1 2m= m2 m=

k1 2k= k2 k=

c1 0= c2 0=

F t( ) F0 ωt( )sin

0
=

F* t( ) ΦΦTF t( )

1
2
--- 1

1– 1

F0 ωt( )sin

0

F0 ωt( )sin
2

-------------------------

F– 0 ωt( )sin
= = =
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(11.13)

with 

and (11.14)

Each equation of the system (11.13) corresponds to the equation
of motion of an undamped SDoF system under an harmonic sine
excitation. The complete solution of these differential equations
has been discussed in Chapter 4 and it is:

(11.15)

The two equations have the following solutions:

(11.16)

The 4 constants  to  can be easily computed for the initial
conditions  by means of the mathematical soft-
ware “Maple”. They are:

q··1 ω1
2q1+

F0 ωt( )sin
2 3 2⁄( )m⋅
---------------------------

F0 ωt( )sin
3m

------------------------- f1 ωt( )sin= = =

q··2 ω2
2q2+

F– 0 ωt( )sin
3m

----------------------------
F– 0 ωt( )sin

3m
---------------------------- f2 ωt( )sin= = =

�




�




�

f1
F0
3m
--------= f2

F0
3m
--------–=

qn A1 ωnt( )cos A2 ωnt( )sin
fn

ωn
2 ω2–

------------------- ωt( )sin+ +=

q1 A1 ω1t( )cos A2 ω1t( )sin
f1

ω1
2 ω2–

------------------- ωt( )sin+ +=

q2 A3 ω2t( )cos A4 ω2t( )sin
f2

ω2
2 ω2–

------------------- ωt( )sin+ +=
�




�




�

A1 A4
u 0( ) u· 0( ) 0= =
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(11.17)

(11.18)

(11.19)

(11.20)

The displacements  becomes:

(11.21)

or

(11.22)

Therefore, the total displacement  becomes:

A1 0=

A2
ω ω1⁄

ω1
2 ω2–

-------------------–
F0
3m
--------⋅

ω ω1⁄

ω1
2 ω2–

-------------------– f1⋅= =

A3 0=

A4
ω ω2⁄

ω2
2 ω2–

-------------------
F0
3m
--------⋅

ω ω2⁄

ω2
2 ω2–

-------------------– f2⋅= =

qn

q1
ω ω1⁄

ω1
2 ω2–

-------------------– f1⋅
� �
� �
� �

ω1t( )sin
f1

ω1
2 ω2–

------------------- ωt( )sin+=

q2
ω ω2⁄

ω2
2 ω2–

-------------------– f2⋅
� �
� �
� �

ω2t( )sin
f2

ω2
2 ω2–

------------------- ωt( )sin+=

�






�






�

q1 f1
ωt( )sin ω ω1⁄( ) ω1t( )sin–

ω1
2 ω2–

------------------------------------------------------------------=

q2 f2
ωt( )sin ω ω2⁄( ) ω2t( )sin–

ω2
2 ω2–

------------------------------------------------------------------=

�






�






�

u t( )
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(11.23)

(11.24)

where:

, , , (11.25)

u t( ) ΦΦq t( ) φnqn t( )
n

 φ1q1 t( ) φ2q2 t( )+= = =

u
1
2
---

1
f1

ωt( )sin ω ω1⁄( ) ω1t( )sin–

ω1
2 ω2–

------------------------------------------------------------------
� �
� �
� �

1–
1

f2
ωt( )sin ω ω2⁄( ) ω1t( )sin–

ω2
2 ω2–

------------------------------------------------------------------
� �
� �
� �

+=

f1
F0
3m
--------= f2

F0
3m
--------–= ω1

k
2m
--------= ω2

2k
m
------=



CCourse “Fundamentals of Structural Dynamics” An-Najah 2013

11 Forced Vibrations Page 11-7 

11.1.3 Example 2: RC beam with Tuned Mass Damper (TMD) 
without damping

• RC Beam  

• TMD (In this case damping is neglected)  

• Damping ratio

• Modal mass

• Modal stiffness

• Natural frequency

• Damping ratio

• Mass

• Stiffness

• Natural frequency

ζn 0.0=

Mn 5.626t=

Kn 886kN m⁄=

fn 2Hz=

ζT 0.0=

MT 0.310t=

KT 44kN m⁄=

fT 1.90Hz=
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• RC beam with TMD 

• Excitation

As excitation a vertical harmonic sine force acting only on the
beam is assumed.

(11.26)

with: : excitation frequency
: static excitation force: 

• Solution

Both the transient and the steady-state part of the solution are
considered.

F t( ) Fo ωt( )sin=

ω
Fo Fo 0.8kN=
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• Case 1: , excitation frequency     KT 10000kN m⁄= f 2Hz=
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• Remarks

- The amplification factor  is defined as:

, 

where 

- The solution was computed by means of the Excel file giv-
en on the web page of the course (SD_MDOF_TMD.xlsx)

- The Tuned Mass Damper (TMD) is blocked

- The natural frequency of the beam with TMD is: 

- At  resonance occurs. In the diagram above the am-
plification factor is limited, because the response of the
system was only calculated during 60 seconds. 
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• Case 2: , excitation frequency     KT 44kN m⁄= f 2Hz=
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• Remarks

- The amplification factor  is defined as:

, 

where 

- The solution was computed by means of the Excel file giv-
en on the web page of the course (SD_MDOF_TMD.xlsx)

- The Tuned Mass Damper (TMD) is free to move

- No resonance at  occurs. Resonance occurs in corre-
spondence of the first and of the second natural frequen-
cies of the 2-DoF system.
In the diagram above the factor  is limited, because the
response of the system was only calculated during 60s. 
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11.2 Forced vibrations with damping

11.2.1 Introduction  

Sought is the response of the 2-DoF system as a result of the ex-
ternal excitation force  given by Equation (11.27)

(11.27)

The equation of motion of the system is:

(11.28)

The displacement vector  can be represented as a linear
combination of the eigenvectors of the 2-DoF system,

, and Equation (11.28) becomes:

(11.29)

We can now multiply Equation (11.29) by  obtaining:

(11.30)

(11.31)

F t( )

F t( )
F1 t( )

F2 t( )
=

Mu·· t( ) Cu· t( ) Ku t( )+ + F t( )=

u t( )

u t( ) ΦΦq t( )=

MΦq·· CΦq· KΦq+ + F t( )=

ΦT

ΦTMΦq·· ΦTCΦq· ΦTKΦq+ + ΦTF t( )=

M*q·· C*q· K*q+ + F* t( )=

CCourse “Fundamentals of Structural Dynamics” An-Najah 2013

11 Forced Vibrations Page 11-14 

Where: 

- : Diagonal matrix of the modal masses 

- : Diagonal matrix of the modal stiffnesses 

- : Vector of the modal forces 

- : Matrix of the modal damping constants. It is diagonal
only if the system is classically damped (see Chapter 10).

For the considered classically damped 2-DoF system, Equation
(11.31) can be rearranged as:

(11.32)

or as alternative:

(11.33)

The two equations of the system (11.33) are decoupled and can
be solved independently. The constants resulting from the solu-
tion of the system can be determined by means of the initial con-
ditions  and .

M* mn
*

K* kn
*

F* Fn
*

C*

m1
*q··1 c1

*q·1 k1
*q1+ + F1

*=

m2
*q··2 c2

*q·2 k2
*q2+ + F2

*=�
�
�

q··1 2ζ1ω1q·1 ω1
2q1+ +

F1
*

m1
*

-------=

q··2 2ζ2ω2q·2 ω2
2q2+ +

F2
*

m2
*

-------=
�




�




�

u 0( ) u0= u· 0( ) v0=
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11.3 Modal analysis: A summary

The dynamic response of a Multi-Degree of Freedom (MDoF)
system due to an external force  can be computed by means
of modal analysis. The required steps are:

1) Compute the properties of the MDoF system

- Compute the mass matrix  and the stiffness matrix .

- Estimate the modal damping ratios 

2) Compute the natural circular frequencies  and the eigen-
vectors 

- Compute the modal properties of the MDoF system ( ,
)

3) Compute the response of every mode of vibration 

- Set up the equation of motion of the modal SDoF systems

 and solve it for 

- Compute the modal displacements 

- Compute the sectional forces by means of the static equiv-
alent forces 

4) Sum up (respectively combine) the contribution from all
modes of vibration to obtain the total response of the system.

F t( )

M K

ζn
*

ωn
φn

M*

K*

q··n 2ζn
*ωnq·n ωn

2qn+ +
Fn

*

mn
*

-------= qn

un t( ) φφnqn=

Fn t( ) Kun t( ) Kφnqn ωn
2Mφnqn t( )= = =
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12  Seismic Excitation

12.1 Equation of motion

12.1.1 Introduction

In analogy to Section 2.1.1, the equation of motion of the system
depicted here can be formulated by means of the d’Alembert
principle  applied to each one of the masses. F T+ 0=

y1 x t( ) l1 us1 u1 t( )+ + +=

y··1 x·· t( ) u··1 t( )+=

T1 m1y··1– m1 x·· u··1+( )–= =

F1 k1 us1 u1+( )– c1u·1– m1g
k2 us2 u2 u1–+( ) c2 u·2 u·1–( )

+
+ +

=

F1 k1 k2+( )u1– k2u2 c1 c2+( )u·1– c2u·2+ +=

y2 x t( ) l1 us1 l2 us2 u2 t( )+ + + + +=

y··2 x·· t( ) u··2 t( )+=

T2 m2y··2– m2 x·· u··2+( )–= =

F2 k2 us2 u2 u1–+( )– c2 u·2 u·1–( )– m1g+=

F2 k2u1 k2u2– c2u·1 c2u·2–+=
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The system of equations governing the motion of the system is

(12.1)

(12.2)

and in matricial form:

(12.3)

or:

(12.4)

or:

(12.5)

which is similar to Equation (8.3) meaning that the base point ex-
citation  can be considered equivalent to two external forces

 and  acting on the masses  and
. This is the same interpretation given in Section 2.1.1 for

SDoF systems.

F1 T1+ 0=

F2 T2+ 0=�
�
�

m1 x·· u··1+( )– c1 c2+( )u·1– c2u·2 k1 k2+( )u1– k2u2+ + 0=

m2 x·· u··2+( )– c2u·1 c2u·2– k2u1 k2u2–+ + 0=�
�
�

m1 0
0 m2

–
x·· u··+ 1

x·· u··+ 2

c1 c2+ c2–
c2– c2

–
u·1

u·2

k1 k2+ k2–
k2– k2

–
u1

u2

0
0

=

m1 0

0 m2

x·· u··+ 1

x·· u··+ 2

c1 c2+ c2–

c2– c2

u·1

u·2

k1 k2+ k2–

k2– k2

u1

u2

+ + 0
0

=

m1 0
0 m2

u··1
u··2

c1 c2+ c2–
c2– c2

u·1

u·2

k1 k2+ k2–
k2– k2

u1

u2

+ +
m1 0
0 m2

x··

x··
–=

x t( )
f1 t( ) m1x·· t( )= f2 t( ) m2x·· t( )= m1
m2



Course “Fundamentals of Structural Dynamics” An-Najah 2013

12 Seismic Excitation Page 12-3 

12.1.2 Synchronous Ground motion

As shown in the previous section, the equation of motion of a
system subjected to a base excitation is:

(12.6)

where  is vector of the absolute accelerations of the DoFs of
the system while  and  are the vectors of the relative veloci-
ties and of the relative displacements of the DoFs of the system,
respectively.

The absolute displacement  of the system can be expressed
as:

(12.7)

where  is displacement of the DoFs due to the static applica-
tion (i.e. very slow so that no inertia and damping forces are gen-
erated) of the ground motion, and  is again the vector of the rel-
ative displacements of the DoFs of the system.

The “static displacements”  can now be expressed in func-
tion of the ground displacement  as follows:

(12.8)

where  is the so-called influence vector. Equation (12.6) can
now be rewritten as:

(12.9)

(12.10)

Mu··a Cu· Ku+ + 0=

u··a
u· u

ua

ua us u+=

us

u

us t( )
ug t( )

us t( ) ιιug t( )=

ι

M ιu··g u··+( ) Cu· Ku+ + 0=

Mu·· Cu· Ku+ + Mιu··g t( )–=

Course “Fundamentals of Structural Dynamics” An-Najah 2013

12 Seismic Excitation Page 12-4 

Influence vector for some typical cases

• Planar system with translational ground motion (Case 1) 

• Planar system with translational ground motion (Case 2)  

In this case all DoFs of the system undergo
static displacements  which are equal
to the ground displacement , hence:

(12.11)

where  is a vector of order , i.e. the
number of DoFs, with all elements equal to 1.

The axial flexibility of the elements
of the depicted system can be ne-
glected, hence 3 DoFs are defined.
In this case DoFs 1 and 2 undergo
static displacements which are
equal to the ground displacement,
while the static displacement of
DoF 3 is equal to 0, i.e.:

(12.12)

us t( )
ug t( )

ι

1
1
…
1

1= =

1 N

ι
1
1
0

=
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• Planar system with rotational ground motion.

The depicted system is subjected to a rotational ground motion 
which generates the following static displacements of the DoFs:

 hence (12.13)

Remark

If the planar system with rotational ground motion has more than
one support and every support is subjected only to the base ro-
tation , then the static application of the base rotations typical-
ly create stresses within the system. Such a case must be con-
sidered like a multiple support excitation (see Section 12.1.3).

θg

us t( )
h1

h2

L

θg t( )= ι
h1

h2

L

=

θg
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• Spatial system with multiple translational ground motion

Consider the spatial frame depicted here:  

The equation of motion of the frame structure for the ground mo-
tions  and  neglecting damping is:

Picture from: Chaudat T., Pilakoutas K., Papastergiou P., Ciupala M. A. (2006) “Shaking Table
Tests on Reinforced Concrete Retrofitted Frame With Carbon Fibre Reinforced Polymers
(CFRP),” Proceedings of the First European Conference on Earthquake Engineering and

Seismology, Geneva, Switzerland, 3-8 September 2006

U1U2

U3

U4U5

U6

Excitation in 
the x-direction

ugx(t)
ugy(t)

Excitation in 
the y-direction

ugx t( ) ugy t( )
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(12.14)

(12.15)

and with

 we obtain 

(12.16)

Remarks
• For other cases see [Cho11] Sections 9.4 to 9.6.

M

u··1
u··2
u··3
u··4
u··5
u··6

K

u1

u2

u3

u4

u5

u6

+ Mιxu··gx t( ) Mιyu··gy t( )––=

M

u··1
u··2
u··3
u··4
u··5
u··6

K

u1

u2

u3

u4

u5

u6

+ M

0
1
0
0
1
0

u··gx t( )

1
0
0
1
0
0

u··gy t( )+

� �
� �
� �
� �
� �
� �
� �
� �
� �

–=

M

m1

m2 0

I3

m4

0 m5

I6

= M

u··1
u··2
u··3
u··4
u··5
u··6

K

u1

u2

u3

u4

u5

u6

+

m1u··gy–
m2u··gx–

0
m4u··gy–

m5u··gx–
0

=

Course “Fundamentals of Structural Dynamics” An-Najah 2013

12 Seismic Excitation Page 12-8 

12.1.3 Multiple support ground motion

Structures with a significative spatial extension may be subject-
ed to ground motion time-histories that are different from support
to support. A typical example for such structures is the bridge
shown in the following figure.  

In this case it is distinguished between the DoFs of the structure
, which are free to move and whose displacements are ex-

pressed in absolute coordinates, and those of the ground ,
which undergo the displacements imposed to the support. The
vector containing the displacements of all DoFs is hence:

(12.17)

The equation of motion of the system can hence be expressed
as (see [Cho11]):

(12.18)

Example of structure where often multiple support excitation is applied: Plan view of the
dynamic model for the seismic analysis of a bridge in the transverse direction.

The springs represent the piers.

ua
ug

u
ua

ug
=

m mg

mg
T mgg

u··a

u··g

c cg

cg
T cgg

u· a

u·g

k kg

kg
T kgg

ua

ug
+ + 0

pg t( )
=
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Where  are the forces resulting at the supports when the
supports undergo the displacements .

In Equation (12.18) the different matrices ,  are not com-
puted separately, they just result form the partition of the overall
system of equations when the DoFs of the structure and of the
ground are collected as it is shown in the example of page 12-12.

The vector of Equation (12.17) can be rewritten as:

(12.19)

where  is the vector of the displacements of the DoFs of the
structure when the ground displacements  are applied stat-
ically, and  is the vector of the relative displacements of the
DoFs of the structure.

The relationship between  and  is given by the following
system of equation:

(12.20)

where  is the vector of the support forces needed to impose
the displacements  statically. If the system is statically deter-
minated,  is equal to zero (See example of page 12-12).

By introducing Equation (12.19) into Equation (12.18) we obtain
the new system of equations:

pg t( )
ug t( )

…g …gg

u
ua

ug

us

ug

u
0

+= =

us
ug t( )

u

us ug t( )

k kg

kg
T kgg

us

ug

0
pg s,

=

pg s,
ug

pg s,
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(12.21)

The first line of the system can be rearranged to:

(12.22)

According to the first line of Equation (12.20) 
and hence Equation (12.22) becomes:

(12.23)

If we now express the vector  in function of the vector  as

(12.24)

the so-called influence matrix  can be computed, again mak-
ing use of the first line of Equation (12.20), i.e.:

(12.25)

and after rearranging we obtain:

(12.26)

The influence matrix  is a  matrix where  is the number
of DoFs of the structure and  is the number of DoFs of the
supports.

By introducing Equation (12.26) into Equation (12.23) the final
equation of motion of the system is obtained:

m mg

mg
T mgg

u··s u··+

u··g

c cg

cg
T cgg

u· s u·+

u· g

k kg

kg
T kgg

us u+
ug

+ + 0
pg t( )

=

mu·· cu· ku+ + mu··s mgu··g+( )– cu· s cgu· g+( ) kus kgug+( )––=

kus kgug+ 0=

mu·· cu· ku+ + mu··s mgu··g+( )– cu· s cgu·g+( )–=

us ug

us ιug=

ι

kg– ug kus kιug= =

ι k 1– kg–=

ι N Ng× N
Ng
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(12.27)

Analogously, with the second line of Equation (12.21), an equa-
tion for the computation of the forces at the supports  can
be setup and solved.

Remarks

In Equation (12.27), the masses associated with the support are
often equal to zero, i.e. . If this is the case, Equation
(12.27) simplifies to:

(12.28)

And considering that in most cases the damping forces on the
LHS of the equation are small (and they are zero if no damping
is present) compared to the inertia forces (see [Cho11]), Equa-
tion (12.28) can be further simplified to:

(12.29)

In the case that the movement of the supports is the same at all
supports,  becomes:

(12.30)

and with  Equation (12.29) becomes

(12.31)

which is the same as Equation (12.10).

mu·· cu· ku+ + mι mg+( )u··g– cι cg+( )u·g–=

pg t( )

mg 0=

mu·· cu· ku+ + mιu··g– cι cg+( )u·g–=

mu·· cu· ku+ + mιu··g–=

ug

ug 1ug=

ι ι1=

mu·· cu· ku+ + mιu··g–=
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Example: 2-DoF system

The following 2-DoF system is subjected to multiple support
ground motion. Two different ground motions are applied to the
degrees of freedom  and . Sought is the equation of motion
of the system:

The stiffness matrix of the system is assembled by means of the
Direct Stiffness Method and the following degrees of freedom
are considered:

: displacements of the structure (12.32)

: displacements of the supports (excited, massless)

(12.33)

: displacements of the supports (not excited, massless)

(12.34)

The stiffness matrix  of the system is:

u1 u5

u
u3

u4

=

ug
u1

u5

=

u0
u2

u6

=

K
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, 

(12.35)

, (12.36)

with 

By swapping DoF 1 and 3 we obtain:

, (12.37)

K EI

L3
------

12 6L 12– 6L 0 0

6L 4L2 6L– 2L2 0 0
12– 6L– 12 12+ 6L– 6L+ 12– 6L

6L 2L2 6L– 6L+ 4L2 4L2+ 6L– 2L2

0 0 12– 6L– 12 6L–

0 0 6L 2L2 6L– 4L2

⋅= U

u1

u2

u3

u4

u5

u6

=

K EI

L3
------

12 6L 12– 6L 0 0

6L 4L2 6L– 2L2 0 0
12– 6L– 24 0 12– 6L

6L 2L2 0 8L2 6L– 2L2

0 0 12– 6L– 12 6L–

0 0 6L 2L2 6L– 4L2

⋅= U

u1

u2

u3

u4

u5

u6

=

L L 2⁄=

K EI

L3
------

24 6L– 12– 0 12– 6L

6L– 4L2 6L 2L2 0 0
12– 6L 12 6L 0 0

0 2L2 6L 8L2 6L– 2L2

12– 0 0 6L– 12 6L–

6L 0 0 2L2 6L– 4L2

⋅= U

u3

u2

u1

u4

u5

u6

=
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By swapping DoF 2 and 4 we obtain:

, (12.38)

By swapping DoF 2 and 5 we obtain:

, (12.39)

By means of static condensation we can now eliminate DoF 2
and 6. We racall that:

 , (12.40)

K EI

L3
------

24 0 12– 6L– 12– 6L

0 8L2 6L 2L2 6L– 2L2

12– 6L 12 6L 0 0

6L– 2L2 6L 4L2 0 0
12– 6L– 0 0 12 6L–

6L 2L2 0 0 6L– 4L2

⋅= U

u3

u4

u1

u2

u5

u6

=

K EI

L3
------

24 0 12– 12– 6L– 6L

0 8L2 6L 6L– 2L2 2L2

12– 6L 12 0 6L 0
12– 6L– 0 12 0 6L–

6L– 2L2 6L 0 4L2 0

6L 2L2 0 6L– 0 4L2

⋅= U

u3

u4

u1

u5

u2

u6

=

K EI

L3
------ ktt kt0

k0t k00

⋅= ktt
ˆ EI

L3
------ ktt k0t

T k00
1– k0t–( )⋅=
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By performig the needed calculations we obtain:

(12.41)

(12.42)

(12.43)

(12.44)

(12.45)

k00
1– 1

k00
----------- k00

ˆ⋅ 1

16L4
------------ 4L2 0

0 4L2
⋅

1

4L2
--------- 0

0 1

4L2
---------

= = =

k0t
T k00

1– k0t

6L– 6L

2L2 2L2

6L 0
0 6L–

1

4L2
--------- 0

0 1

4L2
---------

6L– 2L2 6L 0

6L 2L2 0 6L–
⋅ ⋅=

k0t
T k00

1– k0t

18 0 9– 9–

0 2L2 3L 3L
9– 3L 9 0
9– 3L 0 9

=

ktt
ˆ EI

L3
------

24 0 12– 12–

0 8L2 6L 6L–
12– 6L 12 0
12– 6L– 0 12

18 0 9– 9–

0 2L2 3L 3L
9– 3L 9 0
9– 3L 0 9

–

� �
� �
� �
� �
� �
� �
� �

⋅=

ktt
ˆ EI

L3
------

6 0 3– 3–

0 6L2 3L 3L–
3– 3L 3 0
3– 3L– 0 3

⋅=
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The equation of motion of the system becomes:

(12.46)

We racall that:

 , (12.47)

By performig the needed calculations we obtain:

(12.48)

(12.49)

M 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

u··3
u··4
u··1
u··5

EI

L3
------

6 0 3– 3–

0 6L2 3L 3L–
3– 3L 3 0
3– 3L– 0 3

u3

u4

u1

u5

⋅ ⋅+⋅

0
0

p1 t( )

p5 t( )

=

ktt
ˆ EI

L3
------

k kg

kg
T kgg

⋅= ι k 1– kg–=

k 1– 1
k
------ k̂⋅ L3

EI
------

1
6
--- 0

0 1

6L2
---------

⋅= =

ι k 1– kg– L3

EI
------–

1
6
--- 0

0 1

6L2
---------

EI

L3
------ 3– 3–

3L 3L
⋅ ⋅ ⋅

1
2
--- 1

2
---

1
2L
-------– 1

2L
-------

= = =
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The vector of the effective forces becomes:

(12.50)

And the equation of motion of the system finally becomes:

(12.51)

The following drawings show the interpretation of the elements
of the influence matrix : 

Remarks:
• See Section 9.7 of [Cho11] for an example with a statically in-

determinated system.
• In Finite Element analysis, when applying multiple support ex-

citation, support displacements instead of support acceleration
are often used. For more details see [Bat96].

if  then:

 and 

if  then:

 and 

peff t( ) mι mg+( )u··g t( )–

M
2
----- M

2
-----

I
2L
-------– I

2L
-------

–
u··g1

u··g5

⋅= =

M 0
0 I

u··3
u··4

EI

L3
------ 6 0

0 6L2
u3

u4

⋅ ⋅+⋅

M
2
----- M

2
-----

I
2L
-------– I

2L
-------

–
u··g1

u··g5

⋅=

ι

ug1 1=

u3
1
2
---= u4

1
2L
-------–=

ug5 1=

u3
1
2
---= u4

1
2L
-------=
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12.2 Time-history of the response of elastic systems

As discussed in the previous sections, the equation of motion of
a MDoF system under base excitation is:

(12.52)

Where:

: Mass matrix (symmetric and positive-definite, or diag-
onal if only lumped masses are present)

: Stiffness matrix (symmetric and positive-definite)
: Damping matrix (Classical damping:  is typically a

linear combination of  and )
: Ground acceleration

: Influence vector of order . In the simplest case of a
planar system under translational ground motion .

If the damping of the MDoF system is classical, Equation (12.52)
can be written in the form of  decoupled modal equations,
where  is the number of modes of the system. The modal
equations are of the following form:

(12.53)

or:

(12.54)

The dynamic response of the MDoF system can be written as:

Mu·· Cu· Ku+ + Mιu··g t( )–=

M

K
C C

M K
u··g t( )
ι N

ι 1=

N
N

mn
*q··n cn

*q·n kn
*qn+ + φn

TMιu··g–=

q··n 2ζn
*ωnq·n ωn

2qn+ +
φn

TMι

φn
TMφn

------------------u··g–=
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(12.55)

: nth eigenvector of the MDoF system
: nth modal coordinate of the MDoF system

Further variables in Equation (12.53) are the modal mass 
and the modal stiffness of the nth mode. These parameters
are defined as follows: 

(12.56)

(12.57)

: nth modal circular frequency of the MDOF system

The modal participation factor  is a measure for the contribu-
tion of the n-th mode to the total response of the system. It is de-
fined as follows:

(12.58)

In addition the so-called effective modal mass of the nth mode
is defined as: 

(12.59)

u t( ) φnqn t( )
n 1=

N

�=

φn
qn t( )

mn
*

kn
*

mn
* φn

T M φn⋅ ⋅=

kn
* φn

T K φn⋅ ⋅ ωn
2 mn

*⋅= =

ωn

Γn

Γn
φn

TMι

φn
TMφn

------------------=

mn eff,
* Γn

2 mn
*⋅=
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Unlike the modal mass  and the modal participation factor ,
the effective modal mass  is independent of the normaliza-
tion of the eigenvectors. The following equation holds:

(12.60)

where  is the total mass of the dynamic system. 

The effective modal height of the nth mode is:

 with  and (12.61)

• Significance of the effective modal mass 
The effective modal mass  is the lumped mass of a single-
storey substitute system which is subjected to a base shear
force equal to the nth modal base shear force of a multi-sto-
rey system. 

If in addition the height of the single storey substitute system with
the lumped mass  equals the modal height , the single-
storey system is subjected to a base moment which is equal
to the nth modal base moment of the multi-storey system. 

The following holds:

(12.62)

mn
* Γn
mn eff,

*

mn eff,
*

n 1=

N

� mn
n 1=

N

� mtot= =

mtot

hn
*

hn
* Ln

θ

Ln
------= Ln

θ hj mj φjn⋅ ⋅
j 1=

N

�= Ln φn
T Mι⋅=

mn eff,
*

mn eff,
*

Vbn

mn eff,
* hn

*

Mbn

Vbn mn eff,
* Spa n,⋅ fjn

j 1=

N

�= =
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(12.63)

where  is the pseudo-acceleration of the nth mode.

• Distribution of the internal forces

If the internal forces of the entire system are to be determined,
the modal equivalent static forces should be computed first:

(12.64)

where

(12.65)

The excitation vector  is defined according to equation (12.66)
and specifies the distribution of the inertia forces due to excita-
tion of the nth mode:

(12.66)

 is independent on the normalization of the eigenvector  and
we have that:

(12.67)

Mbn mn eff,
* Spa n, hn

*⋅ ⋅ fjn hj⋅
j 1=

N

�= =

Spa n,

fjn

fn sn Spa n,⋅=

fn f1n f2n … fnn=

sn

sn ΓnMφn=

sn φn

sn
n 1=

N

� Mι=
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• MDoF system with eigenmodes and equivalent SDoF systems

Vb1
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Vb2
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Mb3
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f23
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System
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EI

h

hs

hs

hs

Vb
Mb

m1

m2

m3



Course “Fundamentals of Structural Dynamics” An-Najah 2013

12 Seismic Excitation Page 12-23 

12.3 Response spectrum method

12.3.1 Definition and characteristics

If the maximum response only and not the response to the entire
time history according to Equation (12.55) is of interest, the re-
sponse spectrum method can be applied.

The response spectrum can be computed for the considered
seismic excitation and the maximum value of the modal coordi-
nate  can be determined as follows: 

(12.68)

where:

: modal participation factor of the n-th mode
: Spectral displacement for the circular eigenfre-

quency  and the modal damping rate .
: Spectral pseudo-acceleration for the circular ei-
genfrequency  and the modal damping rate .

The contribution of the nth mode to the total displacement is:

(12.69)

The maxima of different modes do not occur at the same instant.
An exact computation of the total maximum response on the ba-
sis of the maximum modal responses is hence impossible. Dif-
ferent methods have been developed to estimate the total max-
imum response from the maximum modal responses. 

qn max,

qn max, Γn Sd ωn ζn
*( , )⋅ Γn

1
ωn

2
------ Spa ωn ζn

*( , )⋅ ⋅= =

Γn
Sd ωn ζn

*( , )
ωn ζn

*

Spa ωn ζn
*( , )

ωn ζn
*

un max, φn qn max,⋅=
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• “Absolute Sum (ABSSUM)” Combination Rule

(12.70)

The assumption that all maxima occur at the same instant and in
the same direction yields an upper bound value for the response
quantity. This assumption is commonly too conservative. 

• “Square-Root-of Sum-of-Squares (SRSS)” Combination Rule

(12.71)

This rule is often used as the standard combination method and
yields very good estimates of the total maximum response if the
modes of the system are well separated. If the system has sev-
eral modes with similar frequencies the SRSS rule might yield
estimates which are significantly lower than the actual total max-
imum response. 

• “Complete Quadratic Combination (CQC)” Combination Rule

(12.72)

where

 and  are the max. modal responses of modes  and 
 is the correlation coefficient between nodes  and :

ui max, φin qn max,⋅

n 1=

N

�≤

ui max, φin qn max,⋅( )2

n 1=

N

�≈

ui max, ui max,
j( ) ρjk ui max,

k( )⋅ ⋅
k 1=

N

�
j 1=

N

�≈

ui max,
j( ) ui max,

k( ) j k
ρjk j k
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 with 

(12.73)

This method based on random vibration theory gives exact re-
sults if the excitation is represented by a white noise. If the fre-
quencies of the modes are well spaced apart, the result converge
to those of the SRSS rule. More detailed information on this and
other combination rules can be found in [Cho11] Chapter 13.7.

• Internal forces

The aforementioned combination rules cannot only be applied
on displacements but also on internal forces. 

The maximum modal internal forces can be determined from
equivalent static forces

, (12.74)

which, as a first option, are computed from the equivalent static
displacements. Alternatively, the equivalent static forces can be
determined from the inertia forces:

(12.75)

with  being the excitation vector which represents the distribu-
tion of the inertia forces of the nth mode (see Equation 12.67).

Attention:
It is wrong to compute the maximum internal forces from the
maximum displacement of the total response .

ρjk
8 ζiζk ζi rζk+( )r3 2⁄

1 r2–( )2 4ζiζkr 1 r2+( ) 4 ζi
2 ζk

2+( )r2+ +
----------------------------------------------------------------------------------------------------= r

ωk
ωj
------=

Fn max, K un max,⋅=

Fn max, sn Spa ωn ζn
*( , )⋅ ΓnMφn Spa ωn ζn

*( , )⋅= =

sn

umax
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• Number of modes to be considered.

All modes which contribute to the dynamic response of the sys-
tem should be considered. In practical applications, however,
only those modes are considered which contribution to the total
response is above a certain threshold. It should be noted that in
order to achieve the same accuracy for different response meas-
ures (e.g. displacements, shear forces, bending moments, etc.)
different numbers of modes might need to be considered in the
computation. 

For a regular building the top displacement can be estimated
fairly well on the basis of the fundamental mode only. To esti-
mate the internal forces, however, higher modes need to be con-
sidered too. 

According to Eurocode 8 “Design of Structures for Earthquake
Resistance” [CEN04] all modes should be considered (starting
from the lowest) until the sum of the effective modal masses

 of all considered modes corresponds to at least 90% of
the total mass . As an alternative, Eurocode 8 allows the de-
signer to show that all modes with  were consid-
ered in the computation.

mn eff,
mtot

mn eff,
* 0.05mtot>



Course “Fundamentals of Structural Dynamics” An-Najah 2013

12 Seismic Excitation Page 12-27 

12.3.2 Step-by-step procedure

The maximum response of a N-storey building can be estimated
according to the following procedure: 

1) Determine the properties of the MDOF system

• Choose DOFs
• Determine mass matrix  and stiffness matrix .
• Estimate modal damping ratios  

2) Carry out modal analysis of the MDOF system

• Determine circular eigenfrequencies  and eigenvectors  

• Compute the modal properties of the MDOF system ( , )

 , 

• Compute the modal participation factor 

3) The maximum response of the n-th mode should be deter-
mined as described in the following. This should be done for
all modes  which require consideration. 

• For all periods  and for the corresponding damping ratios ,
the spectral response  should be determined from the

M K
ζn

*

ωn φn

K ωn
2M–( ) φφn⋅ 0=

M* K*

mn
* φn

TMφn= kn
* φn

TKφn=

Γn

Γn
φn

TMι

φn
TMφn

------------------=

n 1 2 … N, , ,=

Tn ζn
*

Sa ωn ζn,( )
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response spectrum for pseudo-accelerations. (The spectral dis-
placement  should be determined in the same manner)

• Computation of the maximum displacements

• Computation of the maximum equivalent static forces

• Computation of the maximum internal forces on the basis of the
forces 

4) Estimate the total response in terms of displacements and in-
ternal forces by means of suitable combination rules. Differ-
ent combination rules might be applied (ABSSUM, SRSS,
CQC).

Comment

In order to consider the non-linear behaviour of the structure the
equivalent lateral static forces  can be determined from
the spectral ordinate of the design spectrum for
pseudo-accelerations:

(12.76)

Sd ωn ζn
*( , )

un max, φn Γn Sd ωn ζn
*( , )⋅ ⋅=

Fn max, sn Spa ωn ζn,( )⋅ ΓnMφn Spa ωn ζn,( )⋅= =

Fn max,

Fn max,
Spa ωn ζn q, ,( )

Fn max, sn Spa ωn ζn q, ,( )⋅ ΓnMφn Spa ωn ζn q, ,( )⋅= =
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12.4 Practical application of the response spectrum
method to a 2-DoF system

12.4.1 Dynamic properties 

This 2-DoF system corresponds to the system presented in
Chapter 9 with the only difference that the 2 DoFs are swapped.

• Degrees of freedom (DoF)
Horizontal displacements  and  in correspondence of the
masses  and 

• Masses
Both story masses have unit value, i.e. , hence
the mass matrix  is:

(12.77)

u1 u2
m1 m2

m1 m2 1= =
M

M
m1 0

0 m2

1 0
0 1

= =
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• Stiffness
The horizontal stiffness of each story is , hence the stiff-
ness matrix  is: 

(12.78)

1. unit displacement 

2. unit displacement 

• Damping
Damping is small and is neglected, hence the damping matrix  is:

(12.79)

k 1=
K

K
k11 k12

k21 k22

1 1–
1– 2

= =

u1 1=

u2 1=

C

C 0 0
0 0

=
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12.4.2 Free vibrations

1) Matrix eigenvalue problem

(12.80)

The nontrivial solution for the eigenvector  exists if
the determinant is equal to zero:

(12.81)

(12.82)

This leads to the quadratic equation in :

(12.83)

or

(12.84)

The solution of the quadratic equation yield the eigenvalues:

(12.85)

K ω2M–( )
φ1

φ2
0=⋅

φ
φ1

φ2

0≠=

det K ω2M–( ) 0=

det K ω2M–( ) det 1 ω2– 1–

1– 2 ω2–
0= =

ω2

1 ω2–( ) 2 ω2–( ) 1–( ) 1–( )⋅–⋅ 2 3ω2– ω4 1 0=–+=

ω4 3ω2 1+ 0=–

ω2 3 9 4–+−
2

------------------------- 3 5+−
2

----------------= =
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2) Natural modes of vibration and natural frequencies

For each eigenvalue  a natural mode of vibration and a natu-
ral frequency can be computed. 

• Fundamental mode (first natural mode of vibration)

The smallest eigenvalue  leads to the

1. circular natural frequency (12.86)

When the eigenvalue  is known, the system

(12.87)

can be solved for the corresponding vector  (fundamental
mode) to within a multiplicative constant:

(12.88)

The first row yields following equation:

(12.89)

ω2

ω1
2 3 5–

2
----------------=

ω1
3 5–

2
---------------- 0.62= =

ω1
2

K ω1
2M–( )

φ1

φ2
0=⋅

φ11

φ21

1 3 5–
2

----------------– 1–

1– 2 3 5–
2

----------------–

φ11

φ21
⋅ 0

0
=

2 3 5–( )–
2

---------------------------φ11 1φ21– 0=
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Normalizing the largest coordinate of the eigenvector to unity
( ),  becomes:

(12.90)

or

(12.91)

Hence the first natural mode of vibration is: 

(12.92)

φ11 1= φ21

2 3 5–( )–
2

--------------------------- φ21– 0=

φ21
5 1–
2

---------------- 0.62= =

φ11

φ21

1

5 1–
2

----------------
1

0.62
= =
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• Higher mode of vibration

The largest eigenvalue  leads to the 

2. circular natural frequency (12.93)

In analogy to the fundamental mode, the second mode of vibra-
tion can be computed introducing the second eigenvalue  into
the system of equations: 

(12.94)

The first row yields following equation:

(12.95)

Normalizing the largest coordinate of the eigenvector to unity
( ),  becomes:

(12.96)

or:

(12.97)

ω2
2 3 5+

2
----------------=

ω2
3 5+

2
---------------- 1.62= =

ω2
2

1 3 5+
2

----------------– 1–

1– 2 3 5+
2

----------------–

φ12

φ22
⋅ 0

0
=

2 3 5+( )–
2

----------------------------φ12 1φ22– 0=

φ22 1= φ12

2 3 5+( )–
2

----------------------------φ12 1– 0=

φ12
2–

1 5+
---------------- 1 5–

2
---------------- 0.62–= = =
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Hence the second natural mode of vibration is:

3) Orthogonality of modes

In the following the orthogonality of the modes of vibration
should be checked.

Hence, following matrix of the eigenvectors is needed: 

(12.99)

(12.98)
φ12

φ22

1 5–
2

-------------

1

0.62–
1

= =

Φ
φ11 φ12

φ21 φ22

1 5 1–
2

----------------–

5 1–
2

---------------- 1

= =
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• Orthogonality with respect to the mass matrix

The modal mass matrix  is:

(12.100)

i.e. the matrix  is diagonal.

M*

M* ΦTMΦ
1 5 1–

2
----------------

5 1–
2

----------------– 1

1 0
0 1

1 5 1–
2
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5 1–
2
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⋅ ⋅
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2
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1 5 1–
2
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5 1–
2

---------------- 1

⋅

1 5 1–
2

----------------� �
� �

2
+ 0

0 1 5 1–
2

----------------� �
� �

2
+

1.38 0
0 1.38

= =

=

= =

M*
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• Orthogonality with respect to the stiffness matrix

The modal stiffness matrix  is:

(12.101)

Computation of the single elements of :

(12.102)

(12.103)

(12.104)

K*

K* ΦTKΦ
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5 1–
2
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2

---------------- 2+
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2

---------------- 1

⋅

1 5 1–( )– 2 5 1–
2

----------------� �
� �

2
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2
---------------- 5 1–

2
----------------� �
� �

2
1–+
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2
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2

----------------� �
� �

2
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2
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� �

2
+ +

= =

=

=
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k*21 k*12 0= =
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(12.105)

(12.106)

i.e. the matrix  is diagonal.

12.4.3 Equation of motion in modal coordinates

The equation of motion in modal coordinates of a system without
damping ( ) is: 

(12.107)

where:

, and  is the vector of the modal coordinates

Computation of the elements of the vector :

(12.108)

k*22 2 5 1–( ) 5 1–
2

----------------� �
� �

2
1 5 5 2 5 1+–

4
----------------------------+ + 3.618==+ +=
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=
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C* 0=
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L2
= q

q1

q2
=

L

L ΦT M ι⋅ ⋅
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2
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5 1–
2

----------------– 1

1 0
0 1

1
1

⋅ ⋅ 1.62
0.382

= = =
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(12.110)

leads to:

(12.111)

Checking the circular natural frequency computed using modal
coordinates against the results of Section 12.4.2:

 OK! (12.112)

 OK! (12.113)

The influence vector  represents the dis-
placement of the masses resulting from the
static application of a unit ground displace-
ment :

(12.109)

The substitution of  into the equation of
motion in modal coordinates

ι

ug 1=

ι 1
1

=

L

M* q··⋅ K* q⋅+ L– u··g t( )⋅=

1.38 0
0 1.38

q··1
q··2

⋅ 0.528 0
0 3.618

q1

q2
⋅+ 1.62

0.382
– u··g t( )⋅=

ω1
k11*
m11*
------------ 0.528

1.38
------------- 0.62= = =

ω2
k22*
m22*
------------ 3.618

1.38
------------- 1.62= = =
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• Additional important modal quantities

The modal participation factor  is defined as:

(12.114)

and substituting  and  into this definition gives following
values for  and :

(12.115)

(12.116)

The effective modal mass is defined as:

(12.117)

and substituting  and  into this definition gives following
values for  and :

(12.118)

(12.119)

 OK! (12.120)

Γn

Γn
Ln

mn*
----------=

Ln mn*
Γ1 Γ2

Γ1
L1

m1*
---------- 1.62

1.38
---------- 1.17= = =

Γ2
L2

m2*
---------- 0.382

1.38
------------- 0.28= = =

mn eff,
* Γn

2 mn
*⋅=

Γn mn*
m1 eff,

* m2 eff,
*

m1 eff,
* Γ1

2 m1
*⋅ 1.172 1.38⋅ 1.894= = =

m2 eff,
* Γ2

2 m2
*⋅ 0.282 1.38⋅ 0.106= = =

m1 eff, m+ 2 eff,
* 1.894 0.106+ 2.000= =
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12.4.4 Response spectrum method

The 2-DoF system analysed in the previous Sections shall be
used to illustrate the response spectrum method. For this reason
real masses and stiffnesses shall be assumed. The seismic ac-
tion on the 2-DoF system is represented by the elastic response
spectrum of the “El Centro” earthquake.

1) Model 

The stiffness chosen for each story is 
and an appropriate units transformation leads to: 

(12.121)

Hence, the stiffness matrix is:

(12.122)

Similar to Section 12.4.1,
however with a new definition
of masses and stiffnesses:

Hence, the mass matrix is:

m1 m2 1kg= =

M
m1 0

0 m2

1 0
0 1

kg= =

k1 k2 k 100 N/m= = =

k 100 N/m 100 kgm/s2m 1– 100 kg/s2= = =

K
k11 k12

k21 k22

100 100–
100– 200

kg/s2= =
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2) Natural modes of vibration and natural frequencies

The results of the previous Sections computed using unit mass-
es and unit stiffnesses shall be multiplied by the factor:

(12.123)

• Fundamental mode

Natural frequency:

Natural period: 

• Higher vibration mode

Natural frequency:  

Natural period:  

The eigenvectors are dimensionless quantities and remain un-
changed:

(12.124)

k
m
---- 100kg s2⁄

1kg
------------------------ 100s 1–==

ω1 0.62 100s 1–⋅ 6.2 Hz= =

T1
2π
ω1
------ 2π

6.2 Hz
---------------- 1.02 s= = =

ω2 1.62 100s 1–⋅ 16.2 Hz= =

T2
2π
ω2
------ 2π

16.2 Hz
------------------- 0.39 s= = =

Φ
φ11 φ12

φ21 φ22

1 5 1–
2

----------------–

5 1–
2

---------------- 1

= =
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3) Modal analysis

Equation of motion in - -coordinates (without damping):

(12.125)

(12.126)

Variables transformation in modal coordinates  and :

(12.127)

where:

: Modal Matrix, i.e. the matrix of the eigenvectors

The equation of motion in modal coordinates  and  (without
damping) is:

(12.128)

(12.129)

yielding the equation of motion in modal coordinates of two inde-
pendent SDoF systems.

u1 u2

M u··⋅ K u⋅+ M 1⋅– u··gt⋅=

1 0
0 1

kg
u··1
u··2

⋅ 100 100–
100– 200

kg s2⁄
u1

u2
⋅+ 1 0

0 1
kg 1

1
– u··g t( )⋅=

q1 q2

u Φ q⋅=

Φ

q1 q2

M* q··⋅ K* q⋅+ L– u··g t( )⋅=

1.38 0
0 1.38

kg
q··1
q··2

⋅ 52.8 0
0 362

kg s2⁄
q1

q2
⋅+ 1.62

0.382
kg– u··g t( )⋅=
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4) Peak modal response

The peak modal response of both vibration modes can be com-
puted like in the case of SDoF systems using the spectral value
given by the relevant response spectrum.

The peak value of the modal coordinate  is:

(12.130)

where:

: spectral displacement for a natural frequency
 and a damping  (here )

If an acceleration instead of a displacement response spectrum
is used, then the peak value of the modal coordinate  is:

(12.131)

where:

: spectral pseudo-acceleration for a natural fre-
quency  and a damping  (here )

q1

q1 max,
L1

m1*
---------- Sd ω1 ζ1,( )⋅ Γ1 Sd ω1 ζ1,( )⋅= =

Sd ω1 ζ1,( )
ω1 ζ1 ζ1 5%=

q1

q1 max,
L1

m1*
---------- 1

ω1
2

------ Spa⋅ ω1 ζ1,( )⋅
Γ1

ω1
2

------ Spa ω1 ζ1,( )⋅= =

Spa ω1 ζ1,( )
ω1 ζ1 ζ1 5%=
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The spectral values given by the elastic acceleration response
spectrum of the “El Centro” earthquake for the periods  and

 are: 

and (12.132)

(12.133)

(12.134)

(12.135)

T1
T2

Spa1 4.25 m/s2=

Spa2 7.34 m/s2=

0.01 0.10 1.00 10.0
Period [s]

0

5

10

P
s
e

u
d

o
 a

c
c
e

le
ra

ti
o

n
 [

m
/s

]
2

Spa2 = 7.34 m/s2

Spa1 = 4.25 m/s2

T2 = 0.39 s T1 = 1.02 s

ζ = 5%

q1 max,
1.62kg
1.38kg
----------------- 1

6.2Hz( )2
---------------------- 4.25 m/s2⋅ ⋅ 0.130m= =

q2 max,
0.38kg
1.38kg
----------------- 1

16.2Hz( )2
------------------------- 7.34 m/s2⋅ ⋅ 0.008m= =
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5) Inverse transformation

The peak deformations and internal forces belonging to each mode of vibra-
tion in the original reference system are obtained by multiplying the relevant
eigenvector with the corresponding peak value of the modal coordinate.

• Fundamental mode

(12.136)

(12.137)

Alternatively (allow an approximate consideration of nonlinearities):

(12.138)

(12.139)

umax
1( ) q1 max, φ1⋅ 0.130m 1

0.62
⋅ 130

81
mm= = =

fmax
1( ) K umax

1( )⋅ 100 100–
100 200

0.130
0.081

⋅ 13.0 8.1–
13.0– 16.2+

4.9
3.2

N= = = =

s1 Γ1Mφ1 1.17 1 0
0 1

1
0.62

⋅ ⋅ 1.17
0.725

= = =

fmax
1( ) s1 Spa1⋅ 4.25 1.17

0.725
4.9
3.2

N= = =
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• Higher vibration mode

(12.140)

(12.141)

Alternatively (allow an approximate consideration of nonlinearities):

(12.142)

(12.143)

umax
2( ) q2 max, φ2⋅ 0.008m 0.62–

1
⋅ 5.0–

8.0
mm= = =

fmax
2( ) K umax

2( )⋅ 100 100–
100 200

0.005–
0.008

⋅ 0.5– 0.8–
0.5 1.6+

1.3–
2.1

N= = = =

s2 Γ2Mφ2 0.28 1 0
0 1

0.62–
1

⋅ ⋅ 0.173–
0.28

= = =

fmax
1( ) s2 Spa2⋅ 7.34 0.173–

0.28
1.3–

2.1
N= = =
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6) Combination

The total peak response is obtained from the peak response of
the single vibration modes using e.g. the SRSS combination rule
(SRSS = Square Root of the Sum of Squares). 

• Peak displacements

(12.144)

(12.145)

In this case the total peak displacements are almost identical to
the peak displacements of the fundamental mode. The relatively
small contributions due to the second vibration mode basically
disappear because of the SRSS combination rule.

u1 max, u1
n( )( )

2

k 1=

2

� 130mm( )2 5– mm( )2+ 130mm= = =

u2 max, u2
n( )( )

2

k 1=

2

� 81mm( )2 8mm( )2+ 81mm= = =
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• Peak sectional forces (Shear force V)

Compared to the peak sectional forces due to the fundamental
mode, the total peak sectional forces show a slight increase in
the upper story of the 2-DoF system.

Pay attention to following pitfall!

It is wrong to compute the total peak sectional forces using the
total peak displacements:

(12.148)

(12.149)

The sectional forces would be underestimated.

Upper shear force:

(12.146)

Lower shear force:

(12.147)

V1 max, 4.9N( )2 1.3N–( )2+ 5.1N= =

V2 max, 8.1N( )2 0.8N( )2+ 8.1N= =

V1 max, 100N m⁄ 0.130m 0.081m–( )⋅ 4.9N=≠

V2 max, 100N m⁄ 0.081m⋅ 8.1N=≠
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12.4.5 Response spectrum method vs. time-history analysis

1) Model 

Case study 1 corresponds to the model analysed in Section
12.4.4. Case study 2 represents a dynamic system where the
second vibration mode is important.

Case study 1 Case study 2

Masses: Masses:

Stiffnesses: Stiffnesses:

m1 1.0kg=

m2 1.0kg=

m1 0.1kg=

m2 1.0kg=

k1 100N/m=

k2 100N/m=

k1 10N/m=

k2 100N/m=
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2) Results

• Dynamic properties 

• Note that in this case the eigenvectors are normalized to yield
unit displacement at the top of the second story. Therefore, the
eigenvectors and the participation factors of case study 1 differ
from the values obtained in previous sections.

Case study 1 Case study 2

Periods: Periods:

Eigenvectors:

1: ,

2: ,

Eigenvectors:

1: ,

2: ,

Part. factors: Part. factors:

T1 1.02s=

T2 0.39s=

T1 0.74s=

T2 0.54s=

φ11 1= φ21 0.62=

φ12 1= φ22 1.62–=

φ11 1= φ21 0.27=

φ12 1= φ22 0.37–=

Γ1 1.17=

Γ2 0.17–=

Γ1 2.14=

Γ2 1.14–=
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• Demand 

Case study 1 Case study 2

Displacements:

1:

2:

Sum:

SRSS:

Time-history:

Displacements:

1:

2:

Sum:

SRSS:

Time-history:

Upper shear force:

SRSS:

Time-history:

Upper shear force:

SRSS:

Time-history:

Lower shear force:

SRSS:

Time-history:

Lower shear force:

SRSS:

Time-history:

Δ 0.129m=

Δ 0.005m=

Δ 0.134m=

Δ 0.130m=

Δ 0.130m=

Δ 0.130m=

Δ 0.072m=

Δ 0.202m=

Δ 0.148m=

Δ 0.165m=

V 5.10N=

V 5.69N=

V 1.36N=

V 1.51N=

V 8.05N=

V 8.44N=

V 4.40N=

V 4.92N=
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• Time-histories: Case study 1  
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• Time-histories: Case study 2
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• Time-histories: Summary  
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13  Vibration Problems in Structures

13.1 Introduction

There are more and more vibration problems in structures
because:

• Higher quality materials with higher exploitation
- slender constructions
- smaller stiffnesses and masses

• More intensive dynamic excitations

• Increased sensitivity of people

 

Goal of this chapter

• Give an overview of possible causes of vibration problems in
buildings and of potential countermeasures

• Description of practical cases with vibration rehabilitation

Nevertheless vibration sensitive structures are
often designed for static loads only
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13.1.1 Dynamic action

a) People-induced vibrations

- Pedestrian bridges
- Floors with walking people 
- Floors for sport or dance activities
- Floor with fixed seating and spectator galleries
- High-diving platforms

b) Machinery-induced vibrations

- Machine foundations and supports
- Bell towers
- Structure-borne sound
- Ground-transmitted vibrations

c) Wind-induced vibrations

- Buildings
- Towers, chimneys and masts
- Bridges
- Cantilevered roofs

d) Vibrations induced by traffic and construction activity

- Roads and bridges
- Railways
- Construction works
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13.2 Vibration limitation

13.2.1 Verification strategies

• Frequency tuning 

- High tuning (subcritical excitation)
- Low tuning (supercritical excitation)

• Amplitude limitation
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13.2.2 Countermeasures

• Change of the natural frequency 

• Increase of the damping
- Installation of dampers or absorbers
- Plastic energy dissipation

• Tuned Mass Dampers

Strategy Effects

 (  = distributed mass)

 ( )

 ( )

 ( )

Stiffness:   I bh3∼
Mass:        A bh∼ �

�
�

f I
A
---- h∼ ∼�

fa 1,
π2

2πL2
------------- EI

μ
------⋅= μ

fb 1,
3.932

2πL2
------------- EI

μ
------⋅ 1.56fa 1,= = 2.45 EI⋅

fc 1,
4.732

2πL2
------------- EI

μ
------⋅ 2.27fa 1,= = 5.14 EI⋅

fd 1,
π2

2π L 2⁄( )2
------------------------- EI

μ
------⋅ 4fa 1,= = 16 EI⋅
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13.2.3 Calculation methods

• Computation of the natural frequencies

The natural frequencies of structures have to be determined by
means of realistic models. Approximate formulas that are often
found in design codes and literature shall be checked carefully.

• Computation of the Amplitude

If the frequency of a harmonic of the excitation coincides with a
natural frequency of the structure (resonance), the maximum de-
flection of the structure can be estimated as follows (See Chap-
ter 5):

(13.1)

for  we have  and:

(13.2)

The maximum velocity and the maximum acceleration can be
determined from Equation (13.2) as follows:

(13.3)

(13.4)

up
Fo
k
----- V ω( ) ωt φ–( )cos⋅ ⋅=

ω ωn= V ω( ) 1 2ζ( )⁄=

umax
Fo
k
----- 1

2ζ
------⋅=

u·max ω u⋅ max ω
Fo
k
----- 1

2ζ
------⋅ ⋅= =

u··max ω2 u⋅ max ω2 Fo
k
----- 1

2ζ
------⋅ ⋅= =
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The amplitude of the nth harmonic component of a force gener-
ated by people excitation is proportional to the mass of the per-
son ( , see Equation (13.8)).

(13.5)

(13.6)

• Remarks

- A soft structure is more prone to vibration than a rigid one.
See Equations (13.2) to (13.4).

- The acceleration amplitude is directly proportional on the
ratio of the mass of the people to the building mass.

Fo G αn⋅ g M αn⋅ ⋅= =

u··max ω2 g M αn⋅ ⋅
k

----------------------- 1
2ζ
------⋅ ⋅ k

m
----

g M αn⋅ ⋅
k

----------------------- 1
2ζ
------⋅ ⋅ M

m
-----

g αn⋅
2ζ

-------------⋅= = =

u··max
M
m
-----

g αn⋅
2ζ

-------------⋅=

Course “Fundamentals of Structural Dynamics” An-Najah 2013

13 Vibration Problems Page 13-8 

13.3 People induced vibrations

13.3.1 Excitation forces

In Chapter 6 “Forced Vibrations” it has been already mentioned
that excitation due to people, like e.g. walking, running, jumping,
and so on, can be represented as Fourier-series:

(13.7)

Equation (13.7) can also be represented in a form according to
Equation (13.8):

(13.8)

Where:

-  = Weight of the person

-  = Fourier coefficient for the nth harmonic

-  = Amplitude of the nth harmonic of the excitation force

-  = Step frequency of the excitation force

-  = Phase shift of the nth harmonic ( )

-  = Number of the nth harmonic

-  = Number of considered harmonics

F t( ) a0 an nω0t( )cos bn nω0t( )sin+[ ]
n 1=

∞

�+=

F t( ) G G αn n 2πf0 t φn–⋅ ⋅( )sin⋅ ⋅
n 1=

N

�+=

G

αn

G αn⋅

f0

φn φ1 0=

n

N
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The steady-state response of a SDoF system under periodic ex-
citation can be computed in analogy to Chapter 6 as:

(13.9)

Where

 (Static displacement) (13.10)

(13.11)

,  (13.12)

• Measurement of forces (Example) 

u t( ) u0 t( ) un t( )
n 1=

N

�+=

u0 t( ) G
k
----=

un t( )
G αn⋅

k
---------------

1 βn
2–( ) nω0t φn–( )sin 2ζβn nω0t φn–( )cos–

1 βn
2–( )

2
2ζβn( )2+

----------------------------------------------------------------------------------------------------------------⋅=

ω0 2πf0= βn
nω0
ωn

---------=
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• Jumping (left) and walking (right), see [BB88]  

• Clapping, foot stomping and rocking, see [VB87]  
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• Walking (see [Bac+97] Figure G.1)  

• Clapping (see [Bac+97] Figure G.3) 
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• Jumping (see [Bac+97] Figure G.2)  

• Jumping: Fourier amplitude spectrum (see [Bac+97] Figure G.2)   
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• Remarks regarding Table G.2

- Coefficients and phase angles represent averages.
- Phase angles have strong scattering and therefore, in

many cases, it is difficult to provide reasonable values. In
such cases (e.g,. running and dancing) in Table G.2 no val-
ues   are specified.

- Decisive are cases in which resonance occurs. In such
cases the phase angle no longer plays a role.

- Coefficients and phase were checked and discussed inter-
nationally.

13.3.2 Example: Jumping on an RC beam 

Here the same example as in Section 6.1.3 is considered again:
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• RC Beam

The RC beam has a length of 19 meters. The natural frequency
is thus:

. (13.13)

• Excitation

Here “jumping” is described by means of the Fourier-series giv-
en in Table G.2. In Section 6.1 “periodic excitation”, “jumping”
was described by means of a half-sine function.

Jumping frequency: (13.14)

Contact time:  (phase angle computation)
(13.15)

Weight of the person: (13.16)

• Results

Excel Table: (13.17)

Equation (13.2):

(13.18)

• Remarks

- Shape of the excitation “similar” as half-sine
- Maximum deflection very close to the solution obtained by

means of the half-sine function

fn 2Hz=

f0 2Hz=

tp 0.16s=

G 0.70kN=

umax 0.043m=

umax
F
k
--- 1

2ζ
------⋅ 1.8 0.70⋅

886
---------------------- 1

2 0.017⋅
---------------------⋅ 0.042m= = =
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• Excitation  

• Response  
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13.3.3 Footbridges

• Frequency tuning

- Vertical: Avoid natural frequencies between 1.6 and
2.4Hz. In the case of structures with low damping (Steel),
avoid also natural frequencies from 3.5 to 4.5Hz.

- Horizontal transverse: Avoid natural frequencies be-
tween 0.7 and 1.3Hz (absolutely safe: fht,1 > 3.4Hz).

- Horizontal longitudinal: Avoid natural frequencies be-
tween 1.6 and 2.4Hz.

• Amplitude limitation

- Calculation of the acceleration maximum amplitude.

(13.19)

• Special features of the amplitude limitation

- When walking or running, the effectiveness of people is lim-
ited, because the forces are not always applied at midspan; 

System

Equivalent 
SDoF system

amax ca. 0.5m s2⁄< 5% g=
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- People need a finite number of steps in order to cross the
bridge (This limited excitation time may be too short to
reach the maximum amplitude) 

- Not all people walk in the step (Exception: Lateral vibra-
tions  Synchronisation effect)

To take into account the specificities of the amplitude limitation,
sophisticated methods are available. From [Bac+97] the follow-
ing one is adopted:

 (13.20)

Where:

- : Static deflection at half the span
- : Fourier coefficient
- : dynamic amplification factor  

0.4

0.6

0.8

1

ab
s(

u j
) /

 u
m

ax

ζ = 0.01

0.02
0.050.1

0.2

0

0.2

0 5 10 15 20 25 30 35 40 45 50

Cycle

→

amax 4π2 f2 y α Φ⋅ ⋅ ⋅ ⋅= m s2⁄[ ]

y

α

Φ
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The acceleration  given in Equation (13.20) is the accelera-
tion generated by one person crossing the footbridge. If  people
are on the bridge at the same time, the maximum acceleration is
typically less than  because not all people walk in step
across the bridge.

.

The square root of the number of people is often 
chosen as the multiplication factor, i.e. 

amax
n

n amax⋅

n amax⋅
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Example: “Walking on an RC beam”

• Situation  

- Stiffness at mid span: 
- Natural frequency: 
- Damping: 

• Excitation

- Walking with  according to Table G.2.
- Step length: 
- Weight of the Person: 

Discretisation for FE Analysis

System

Kn 886kN m⁄=
fn 2Hz=

ζ 0.017=

f0 2Hz=
S 0.70m=

G 1kN=
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• Rough estimate of maximum displacement and acceleration

The maximum displacement, and the maximum acceleration can
be estimated by means of Equations (13.2) and (13.4):

(13.21)

(13.22)

(13.23)

(13.24)

• Estimate of the maximum displacement and acceleration using
the improved method 

The maximum acceleration is computed by means of Equation
(13.20) as follows:

Walking-velocity: (13.25)

Crossing time: (13.26)

Number of cycles: (13.27)

Amplification factor: (13.28)

From Equation (13.20):

(13.29)

umax,st
G
Kn
------ 1

886
--------- 0.001128m 0.11cm= = = =

umax,1
G α1⋅

Kn
--------------- 1

2ζ
------⋅ 1 0.4⋅

886
--------------- 1

2 0.017⋅
---------------------⋅ 0.0133m 1.33cm= = = =

umax 0.11 1.33+ 1.44cm= =

amax ω2umax,1 2π 2⋅( )2 0.0133⋅ 2.10m s2⁄= = =

v S f0⋅ 0.7 2⋅ 1.4m s⁄= = =

Δt L v⁄ 19 1.4⁄ 13.57s= = =

N Δt fn⋅ 13.57 2⋅ 27= = =

Φ 23=

amax 4π2 22 1.00
886
---------- 0.40 23⋅ ⋅ ⋅ ⋅ 1.64m s2⁄= =



Course “Fundamentals of Structural Dynamics” An-Najah 2013

13 Vibration Problems Page 13-23 

• Computation of displacements and accelerations by means of
the FE Programme ABAQUS

Displacements and accelerations are computed by means of
time-history analysis:

- Excitation   
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- Time history of the displacement 

- Time history of the acceleration  
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• Remarks

- The refined method and the time history calculations show
lower values   compared to the rough method;

- The refined method and the time history calculations are in
good agreement;

- The time history of the displacement is not symmetric
compared to the time axis, because of the static compo-
nent of the displacement caused by the weigh of the cross-
ing person;

- The time history of the acceleration is symmetric com-
pared to the time axis, because there is no static compo-
nent of the acceleration.

• Swinging footbridge on the Internet

http://www.londonmillenniumbridge.com/

http://www.youtube.com
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13.3.4 Floors in residential and office buildings

• Frequency tuning

- If the excitation is generated by walking ( ), the
following natural frequencies shall be exceeded:  

• Amplitude limitation

- Calculation of the acceleration maximum amplitude

(13.30)

- Because of the many non-structural components (wallpa-
per, furniture, suspended ceilings, technical floors, parti-
tions, ....) it is difficult to estimate the dynamic properties of
the floors.

- Where possible measure the dynamic properties.

Response of people to vibrations

The sensitivity of people to vibration depends on many parame-
ters:

Damping Natural frequency
[Hz] Remark

> 5% > 5 Avoid resonance due to the 
second harmonic

< 5% > 7.5 Avoid resonance due to the 
third harmonic

fmax 2.4Hz≅

amax ca. 0.05m s2⁄< 0.5% g=



Course “Fundamentals of Structural Dynamics” An-Najah 2013

13 Vibration Problems Page 13-27 

- Position (standing, sitting, lying)
- Direction of the action compared to the spinal column
- Activity (resting, walking, running, ...)
- Type of vibration
- .... 

• ISO 2631 standard

(13.31)

Where  is the period of time over which the effective accelera-
tion was measured.

3 limits are defined:

- G1: Reduced comfort boundary
- G2: Fatigue-decreased proficiency boundary ~ 3 x G1
- G3: Exposure limit ~ 6 x G1

Description Frequency 1 to 10 Hz
amax [m/s2]

Frequency 10 to 100 Hz
vmax [m/s]

Barely noticeable
Clearly noticeable
Disturbing
Not tolerable

0.034
0.1

0.55
1.8

0.0005
0.0013
0.0068
0.0138

Vertical harmonic vibration action on a standing person. Accepted averages; scat-
ters up to a factor of 2 is possible (from [Bac+97])

aeff
1
T
--- a2 t( ) td

0

T

�=

T
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• G2 limit for vibrations parallel to the spinal column  

• G2 limit for vibrations transverse to the spinal column  
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13.3.5 Gyms and dance halls

Due to gymnastics or dancing, very large dynamic forces are
generated. This is readily understandable when the Fourier co-
efficients in Table G2 are considered:

- Walking: , , 
- Running: , , 
- Jumping: , , 
- Dancing: , , 

(however: a - many people moving rhythmically. b - certain
dances are very similar to jumping)

• Frequency tuning

- If the excitation is generated through jumping ( )
or dancing ( ), then the following natural frequen-
cies shall be exceeded:  

Construction
Gyms

Natural frequency 
[Hz]

Dance halls
Natural frequency 

[Hz]

Reinforced concrete
Prestressed concrete
Composite structures

Steel

> 7.5
> 8.0
> 8.5
> 9.0

> 6.5
> 7.0
> 7.5
> 8.0

α1 0.4= α2 0.1= α3 0.1=

α1 1.6= α2 0.7= α3 0.2=

α1 1.9= α2 1.6= α3 1.1=

α1 0.5= α2 0.15= α3 0.1=

fmax 3.4Hz≅
fmax 3.0Hz≅
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• Amplitude limitation

- Calculation of the acceleration maximum amplitude

(13.32)

- Limits depend on the activity, if e.g. people are sitting in the
dance hall, as well, this limit shall be reduced.

- Because of the large forces that can be generated through
these activities, the dynamic characteristics of the structure
shall be estimated as precisely as possible.

13.3.6 Concert halls, stands and diving platforms

See [Bac+97].

13.4 Machinery induced vibrations

It is not possible to carry out here a detailed treatment of machin-
ery induced vibrations. Therefore, reference to [Bac+97] is
made.

amax ca. 0.5m s2⁄< 5% g=
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13.5 Wind induced vibrations

Wind-induced vibrations cover a challenging and wide area. It is
not possible to carry out here their detailed treatment. Therefore,
reference is made to the relevant literature:

• [Bac+97]

• Simiu E., Scanlan R.H.: “Wind Effects on Structures”. Third
Edition. John Wiley & Sons, 1996.

13.5.1 Possible effects

• Gusts: Stochastic effects in wind direction

- Turbulent wind with spatially and temporally variable wind
speed.  
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• Vortex shedding: Periodic action transversely to the wind di-
rection

- Vortex are not shedded left and right at the same time. If the
time-interval of the vortex shedding is equal to the oscilla-
tion period of the structure, resonance excitation occurs.  

(13.33)

Where
: Critical wind velocity

: Natural frequency of the structure transverse to the
wind direction

: Diameter of the structure
: Strouhal number (about 0.2 for circular cross sections)

• Buffeting: Periodic action in wind direction

- Vortex detached from an obstacle hit the structure 

ucrit
fe d⋅

S
-----------=

ucrit

fe

d

S
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• “Gallopping” and “Flutter”: 
Unstable interaction between wind flow and structural motion

- Gallopping: Motion of the structure transversely to the flow
direction.

- Flutter: Combined flexural-torsional motion of the structure.

Work done by wind forces during flutter  

Stability curves for bridge cross-sections 
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13.6 Tuned Mass Dampers (TMD)

13.6.1 Introduction

When discussing MDoF systems, in Section 11.1.3 a Tuned
Mass Damper (TMD) has already been discussed. However, in
that case zero damping was assumed for both the structure and
the TMD. 

Here the theory of the TMD with damping is treated. As we shall
see, the damping of the two degrees of freedom is a design pa-
rameter, and it shall be possible to chose it freely, therefore:  

• References

[BW95] Bachmann H., Weber B.: “Tuned Vibration Absorbers for
Damping of Lively Structures”. Structural Engineering Inter-
national, No. 1, 1995.

[Den85] Den Hartog J.P.: “Mechanical Vibrations”. ISBN 0-486-
64785-4. Dover Publications,1985. (Reprint of the original
fourth edition of 1956)

There it was possible to solve the equation of
motion simply by means of modal analysis.

In the case of TMD with damping
modal analysis can not be used
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13.6.2 2-DoF system  

The equations of motion of the 2-DoF system shown above are:

(13.34)

For an harmonic excitation of the type , a possi-
ble ansatz for the steady-state part of the solution is:

, , , (13.35)

Using the complex numbers formulation allows a particularly el-
egant solution to the problem. The equations of motion become:

mHu··H cHu·H cT u·H u·T–( ) kHuH kT uH uT–( )+ + + + F t( )=

mTu··T cT u·T u·H–( ) kT uT uH–( )+ + 0=�
	



F t( ) FH ωt( )cos=

uH UHeiωt= uT UTeiωt= F t( ) FHeiωt=
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(13.36)

To facilitate the solution of the system, some dimensionless pa-
rameters are now introduced:

: Mass ratio (TMD Mass/Mass of the structure)

: Natural frequency of the TMD

: Natural frequency of the structure without TMD

: Ratio of the natural frequencies

: Ratio of the excitation frequency to the natural
frequency of the structure

: Damping ratio of the TMD

: Damping ratio of the structure

: Static deformation of the structure

Substituting these dimensionless parameters into Equation
(13.36) we obtain:

(13.37)

ω2mH– iω cH cT+( ) kH kT+( )+ +[ ]UH iωcT– kT–[ ]UT+ FH=

iωcT– kT–[ ]UH ω2mT– iωcT kT+ +[ ]UT+ 0=
�
�
	
�



γ mT mH⁄=

ωT kT mT⁄=

ωH kH mH⁄=

β ωT ωH⁄=

Ω ω ωH⁄=

ζT

ζH

UH0 FH kH⁄=

Ω2– 2iΩ ζH βγζT+( ) 1 β2γ+( )+ +[ ]UH 2iΩβγζT– β2γ–[ ]UT+ UH0=

2iΩβγζT– β2γ–[ ]UH Ω2γ– 2iΩβγζT β2γ+ +[ ]UT+ 0=
�
�
	
�
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The system of equation can be easily solved using “Maple”, and
we obtain the following expression for the amplification function

:

(13.38)

The complex expression given in Equation (13.38) shall now be
converted into the form:

 or (13.39)

The displacement  has therefore two components: 1) One
that is in phase with the displacement  and 2) one with a
phase shift equal to . From the vectorial sum of these two
components the norm of  can be computed as:

(13.40)

Equation (13.38) has however the form

(13.41)

and must be first rearranged as follows:

(13.42)

(13.43)

UH UH0⁄

UH

UH0
--------- β2 Ω2–( ) 2iΩβζT+

β2 Ω2–( ) Ω2β2 1 γ–( )– Ω2 Ω2 4βζHζT–( )+[ ] 2i β2 Ω2–( )ζH 1 Ω2 Ω2γ––( )βζT+[ ]+
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

z x iy+= UH UH0 x iy+( )=

UH
UH0

π 4⁄
UH

UH UH0 x2 y2+=

UH UH0
A iB+( )
C iD+( )

---------------------=

UH UH0
A iB+( ) C iD–( )⋅
C iD+( ) C iD–( )⋅

----------------------------------------------- UH0
AC BD+( ) i BC AD–( )+

C2 D2+
-----------------------------------------------------------------= =

UH UH0
A2 B2+
C2 D2+
-------------------=
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Thus, the norm of the dynamic amplification function 
can be easily calculated:

(13.44)

A similar procedure can be followed to compute the dynamic am-
plification function .

Next figure show a representation of Equation (13.44) in function
of  for an undamped structure . Curves for different val-
ues of the parameters ,  and  are provided.  

UH UH0⁄

UH

UH0
---------

β2 Ω2–( )2 2ΩβζT( )2+

β2 Ω2–( ) Ω2β2 1 γ–( )– Ω2 Ω2 4βζHζT–( )+[ ]2 4 β2 Ω2–( )ζH 1 Ω2 Ω2γ––( )βζT+[ ]2+
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

UT UH0⁄

Ω ζH 0=
β γ ζT

0

4

8
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16
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� [-]

U
H
/U

H
0 [

-] 

�T=0 �T=inf.
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13.6.3 Optimum TMD parameters

Based on observations and consideration at the previous image
Den Hartog found optimum TMD parameters for an undamped
structure:

 or (13.45)

(13.46)

These optimum TMD parameters can be applied also to lowly
damped structures providing good response results.

13.6.4 Important remarks on TMD

• The frequency tuning of the TMD shall be quite precise

• The compliance with the optimum damping is less important

• Design charts for TMDs shall be computed numerically

• TMDs are most effective when the damping of the structure is low

• It is not worth increasing the mass ratio too much

• For large mass ratios, the amplitude of the TMD oscillations reduce

• Meaningful mass ratios  are 3-5%

• The exact tuning of the TMD occurs experimentally, therefore
great care should be paid to construction details.

fT opt,
fH

1 mT mH⁄+
-----------------------------

fH
1 γ+
-----------= = βopt

1
1 γ+
-----------=

ζT opt,
3mT mH⁄

8 1 mT mH⁄+( )3
--------------------------------------- 3γ

8 1 γ+( )3
----------------------= =

γ
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• Amplification function with TMD: Variation of TMD frequency  

• Amplification function with TMD: Variation of TMD damping  
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• Design charts: Displacement of the structure (from [BW95])  

• Design charts: Relative TMD displacement (from [BW95]) 
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14  Pedestrian Footbridge with TMD

14.1 Test unit and instrumentation
The test unit is a post-tensioned RC beam. The beam is made
of lightweight concrete and the post-tensioning is without bond.
The dimension of the beam were chosen to make it particularly
prone to vibrations induced by pedestrians. A Tuned Mass
Damper (TMD) is mounted at midspan.  

On the test unit the following quantities are measured: 

• Displacement at midspan
• Acceleration at midspan
• Acceleration at quarter point of the span
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• Characteristics of the TMD

A close-up of the TMD is shown in Figure 14.2. We can see:

• The 4 springs that define the stiffness  of the TMD
• The 4 viscous dampers that define the damping constant  of

the TMD
• The mass , which is made up by a concrete block and two side

container filled with lead spheres. The lead spheres are used for
the fine-tuning of the TMD.

The properties of the TMD are given in Section 14.2.

Figure 14.2: Close-up of the TMD.

KT

copt

MT
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14.2 Parameters

14.2.1 Footbridge (Computed, without TMD)

Modal mass:  

Modal stiffness:  

Natural frequency:  
(Computed with TMD mass: )

14.2.2 Tuned Mass Damper (Computed)

Mass:

Mass ratio:

Natural frequency:

(Measured: )

Stiffness:

Damping rate

(Measured: )

Damping constant:

MH 5300kg=

KH 861kN m⁄=

fH 2.03Hz=

f 1.97Hz=

MT 310kg=

μ
MT
MH
-------- 0.0585 5.85%= = =

fopt
fH

1 μ+
------------ 1.92Hz= =

fT 1.91Hz=

KT MT 2πfopt( )2⋅ 50.9kN/m= =

ζopt
3μ

8 1 μ+( )3
----------------------- 0.14 14%= = =

ζT 13%=

copt 2ζopt KTMT 1.18kNs/m= =
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14.3 Test programme

Following tests are carried out: 

Typical results of the experiments are presented and briefly
commented in the following sections.

No. Test Action location TMD

1 Free decay Midspan Locked

2 Sandbag Midspan Locked

3 Sandbag Quarter-point Locked

4 Sandbag Midspan Free

5 Walking 1 Person 3Hz Along the beam Locked

6 Walking 1 Person 2Hz Along the beam Locked

7 Walking 1 Person 2Hz Along the beam Free

8 Walking in group 2Hz Along the beam Locked

9 Walking in group 2Hz Along the beam Free

10 Jumping 1 Person 2Hz Midspan Locked

11 Jumping 1 Person 2Hz Midspan Free
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14.4 Free decay test with locked TMD

Time history of the displacement at midspan  

Evaluation:  

Figure 14.3: Free decay test with locked TMD: Displacement at 
midspan.
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Fourier-spectrum of the displacement at midspan 

The measured natural frequency of the footbridge with locked
TMD is equal to:

(14.1)

This value is less than the value given in Section 14.2.1. This
can be explained with the large amplitude of vibration at the start
of the test, which causing the opening of cracks in the web of the
beam, hence reducing its stiffness.

The second peak in the spectrum corresponds to ,
wich is in good agreement with Section 14.2.1.

Figure 14.4: Free decay test with locked TMD: Fourier-spectrum of the 
displacement at midspan.
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14.5 Sandbag test

The sandbag test consists in hanging a 20 kg sandbag 1 meter
above the footbridge, letting it fall down and measuring the re-
sponse of the system.

In order to excite the different modes of vibration of the foot-
bridge, the test is repeated several times changing the position
of the impact of the sandbag on the bridge. The considered lo-
cations are:

- at midspan (Section 14.5.1)

- at quarter-point of the span (Section 14.5.2).

These tests are carried out with locked TMD. In order to investi-
gate the effect of the TMD on the vibrations of the system, the
test of Section 14.5.1 is repeated with free TMD (see Section
14.5.3).

Remark

• The results presented in Section 14.5.1 and those presented
in Section 14.5.2 and 14.5.3 belongs to two different series of
tests carried out at different point in time. Between these test
series the test setup was completely disassembled and reas-
sembled. Slight differences in the assemblage of the test setup
(support!) may have led to slightly different natural frequencies
of the system.
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14.5.1 Locked TMD, Excitation at midspan   

Figure 14.5: Sandbag test with locked TMD: Acceleration at midspan.

Figure 14.6: Sandbag test with locked TMD: Fourier-spectrum of the 
acceleration at midspan.

0 1 2 3 4 5 6 7 8 9 10
Time [s]

-1.0

-0.5

0.0

0.5

1.0

A
cc

el
er

at
io

n 
an

 m
id

sp
an

 [m
/s

2 ]

0 5 10 15 20
Frequency [Hz]

0.000

0.010

0.020

0.030

0.040

"S
pe

ct
ra

l a
cc

el
er

at
io

n"

f1=2.00Hz

f3=18.06Hz

Course “Fundamentals of Structural Dynamics” An-Najah 2013

14 Pedestrian Footbridge with TMD Page 14-10 

  

Figure 14.7: Sandbag test with locked TMD: Acceleration at quarter-
point of the span.

Figure 14.8: Sandbag test with locked TMD: Fourier-spectrum of the 
acceleration at quarter-point of the span.
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Remarks

• With the sandbag test in principle all frequencies can be excit-
ed. Figures 14.5 and 14.7 show a high-frequency vibration,
which is superimposed on a fundamental vibration;

• The Fourier amplitude spectrum shows prominent peaks at the
first and third natural frequencies of the system (Footbridge
with locked TMD);

• The second mode of vibration of the system is not excited, be-
cause the sandbag lands in a node of the second eigenvector.

• At midspan, the amplitude of the vibration due to the first mode
of vibration is greater than at quarter-point. The amplitude of
the vibration due to the third mode of vibration, however, is
about the same in both places. This is to be expected, if the
shape of the first and third eigenvectors is considered.

• The vibration amplitude is relatively small, therefore, the meas-
ured first natural frequency  in good agreement with
the computation provided in Section 14.2.1.

f1 2.0Hz=
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14.5.2 Locked TMD, Excitation at quarter-point of the span  

Figure 14.9: Sandbag test with locked TMD: Acceleration at midspan.

Figure 14.10: Sandbag test with locked TMD: Fourier-spectrum of the 
acceleration at midspan.
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Figure 14.11: Sandbag test with locked TMD: Acceleration at quarter-
point of the span.

Figure 14.12: Sandbag test with locked TMD: Fourier-spectrum of the 
acceleration at quarter-point of the span.
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Remarks

• When the sandbag lands at quarter-point of the bridge, the
second mode of vibration of the system is strongly excited. Its
contribution to the overall vibration at quarter-point of the foot-
bridge is clearly shown in Figures 14.11 and 14.12.

• The acceleration sensor located at midspan of the footbridge
lays in a node of the second mode of vibration, and as expect-
ed in figures 14.9 and 14.10 the contribution of the second
mode is vanishingly small.
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14.5.3 Free TMD: Excitation at midspan   

Figure 14.13: Sandbag test with free TMD: Acceleration at midspan.

Figure 14.14: Sandbag test with free TMD: Fourier-spectrum of the 
acceleration at midspan.
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Remarks

• With active (free) TMD the “first” and the “third “natural fre-
quencies of the bridge are excited. As expected, these fre-
quencies are slightly larger than the natural frequencies of the
system (bridge with locked TMD), which are given in Figure
14.6. This is because the mass of the TMD is no longer locked
and can vibrate freely.

• The effect of the TMD is clearly shown in Figure 14.14. The
amplitude of the peak in the “first natural frequency” is much
smaller than in Figure 14.6. The amplitude of the peak at the
“third natural frequency” is practically the same. The “third
mode of vibration” is only marginally damped by the TMD.

• In the two comments above, the natural frequencies are men-
tioned in quotes, because by releasing the TMD number and
properties of the natural vibrations of the system change. A di-
rect comparison with the natural vibrations of system with
locked TMD is only qualitatively possible.
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14.6 One person walking with 3 Hz

One 65 kg-heavy person (G = 0.64 kN) crosses the footbridge.
He walks with a frequency of about 3 Hz, which is significantly
larger than the first natural frequency of the bridge.

Remarks

• The static deflection of the bridge when the person stands at
midspan is: 

• The maximum measured displacement at midspan of the
bridge is about 2 mm (see Figure 14.15), which corresponds to
about 2.5 times . As expected, the impact of dynamic effects
is rather small.

• In the Fourier spectrum of the acceleration at midspan of the
bridge (see Figure 14.17), the frequencies that are represent-
ed the most correspond to the first, the second and the third
harmonics of the excitation. However, frequencies correspond-
ing to the natural modes of vibrations of the system are also
visible.

dst
G

KH
------- 0.69

861
---------- 0.00080m 0.80mm= = = =

dst
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Test results   

Figure 14.15: One person walking with 3 Hz: Displacement at midspan 
with locked TMD.

Figure 14.16: One person walking with 3 Hz: Acceleration at midspan 
with locked TMD.
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Figure 14.17: One person walking with 3 Hz: Fourier-Spectrum of the 
acceleration at midspan with locked TMD.
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14.7 One person walking with 2 Hz

One 95 kg-heavy person (G = 0.93 kN) crosses the footbridge. He
walks with a frequency of 1.95 Hz, which is approximately equal to the
first natural frequency of the bridge. The length of the step is 0.70 m.

Sought is the response of the bridge under this excitation. A
similar problem was solved theoretically in Section 13.3.3.

14.7.1 Locked TMD (Measured) 

First the maximum amplitudes are calculated by hand:

Static displacement:

(Measured: )

Walking velocity:

Crossing time:

Number of cycles:

Amplification factor: (From page 13-20 with )

Max. acceleration:

(Measured: )

Max. dyn. displ.:

Max. displacement:
(Measured: )

dst
G

KH
------- 0.93

861
---------- 0.00108m 1.08mm= = = =

dst 1.22mm=

v S f0⋅ 0.7 1.95⋅ 1.365m s⁄= = =

Δt L v⁄ 17.40 1.365⁄ 12.74s= = =

N Δt fn⋅ 12.74 1.95⋅ 25= = =

Φ 22= ζH 1.6%=

amax 4π2 1.952 0.00108 0.4 22⋅ ⋅ ⋅ ⋅
1.43m s2⁄

=
=

amax 1.63m s2⁄=

ddyn,max 1.08 0.4 22⋅ ⋅ 9.50mm= =

dmax 9.50 1.08+ 10.58mm= =

dmax 12.04mm=
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Test results   

Figure 14.18: One person walking with 2 Hz: Displacement at midspan 
with locked TMD.

Figure 14.19: One person walking with 2 Hz: Acceleration at midspan 
with locked TMD.
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14.7.2 Locked TMD (ABAQUS-Simulation)   

Figure 14.20: One person walking with 2 Hz: Displacement at midspan 
with locked TMD. (ABAQUS-Simulation).

Figure 14.21: One person walking with 2 Hz: Acceleration at midspan 
with locked TMD. (ABAQUS-Simulation).
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The curves in Figures 14.20 and 14.21 were computed using the
FE program ABAQUS. A similar calculation is described in detail
in Section 13.3.3. The input data used in that section were only
slightly adjusted here in order to better describe the properties of
the test.

Maximum vibration amplitude

Static displacement:
(Measured: )

Maximum displacement:
(Measured: )

Amplification factor:

Maximum acceleration:
(Measured: )

The maximum amplitudes of the numerical simulation and of the
experiment agree quite well and also the time-histories shown in
Figures 14.18 and 14.21 look quite similar.

Please note that during the first 2 seconds of the experiment,
displacements and accelerations are zero, because the person
started to walk with a slight delay.

dst 1.08mm=

dst 1.22mm=

dmax 11.30mm=

dmax 12.04mm=

V
dmax
dst

----------- 11.30
1.08
------------- 10.5= = =

amax 1.68m s2⁄=

amax 1.63m s2⁄=
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14.7.3 Free TMD  

Figure 14.22: One person walking with 2 Hz: Displacement at midspan 
with free TMD. 

Figure 14.23: One person walking with 2 Hz: Acceleration at midspan 
with free TMD. 
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Estimate of the maximum vibration amplitude

Amplification factor: about 5.5 (from page 13-41)

Maximum dyn. displ.:

Maximum displacement:
(Measured: )

Maximum acceleration.:

(Measured: )

14.7.4 Remarks about “One person walking with 2 Hz”

• The effect of the TMD can be easily seen in Figures 14.22 and
14.23. The maximum acceleration at midspan reduces from

 to , which corresponds to a permissible
value.

ddyn,max 1.08 0.4 5.5⋅ ⋅ 2.38mm= =

dmax 2.38 1.08+ 3.46mm= =

dmax 3.27mm=

amax 4π2 1.952 0.00108 0.4 5.5⋅ ⋅ ⋅ ⋅
0.36m s2⁄

=
=

amax 0.34m s2⁄=

1.63m s2⁄ 0.34m s2⁄
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14.8 Group walking with 2 Hz

All student participating to the test (24 people) cross the foot-
bridge in a continuous flow. A metronome is turned on to ensure
that all students walk in the same step and with a frequency of
about 2 Hz.

The test is carried out both with locked (Section 14.8.1) and free
(Section 14.8.2) TMD.

In Figures 14.24 to 14.27 the first 40 seconds of the response of
the bridge are shown.

Remarks

The results of the experiments with several people walking on
the bridge are commented by using the results of tests with one
person walking (see Section 14.7) as comparison. For this rea-
son the maximum vibration amplitudes shown in Figures 14.18,
14.19, 14.22, 14.23 and 14.24 to 14.27 are summarised in Ta-
bles 14.1 and 14.2.   

Case Group 1 person ratio
Maximum acceleration at
midspan. Locked TMD 2.05 m/s2 1.63 m/s2 1.26

Maximum acceleration at
midspan. Free TMD 0.96 m/s2 0.34 m/s2 2.82

Ratio 2.14 4.79

Table 14.1: Comparison of the accelerations at midspan.
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It is further assumed that only about 16 of the 24 persons are on
the footbridge at the same time.

The following remarks can thereby be made:

• The maximum acceleration measured at midspan of the bridge
with locked TMD is only about 1.26-times greater than the ac-
celeration which has been generated by the single person. Ac-
cording to section 13.3.3 we could have expected a larger
acceleration from the group ( ). One reason why the
maximum acceleration is still relatively small, is the difficulty to
walk in the step when the “ground is unsteady.” With a little
more practice, the group could probably have achieved much
larger accelerations. It is further to note that the person who
walked of the bridge for the test presented in Section 14.7 was
with his 95 kg probably much heavier than the average of the
group.

• The maximum displacement measured at midspan of the
bridge with locked TMD is 1.70 times larger than the displace-
ment generated by the single person. The amplification factor

Case Group 1 person ratio
Maximum displacement at
midspan. Locked TMD 20.52 mm 12.04 mm 1.70

Maximum displacement at
midspan. Free TMD 12.28 mm 3.27 mm 3.76

Ratio 1.67 3.68

Table 14.2: Comparison of the displacements at midspan.

16 4=
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of the displacement is larger that the amplification factor of the
accelerations, because the static deflection caused by the
group is significantly larger than that caused by the single per-
son.

• The activation of the TMD results in a reduction of the maxi-
mum acceleration caused by the single person by a factor of
4.79. In the case of the group the reduction factor is only 2.14.
It should be noted here that when the TMD is active (free), the
vibrations are significantly smaller, and therefore it is much
easier for the group to walk in step. It is therefore to be as-
sumed that in the case of the free TMD, the action was strong-
er than in the case of the locked TMD. This could explain the
seemingly minor effectiveness of the TMD in the case of the
group.
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14.8.1 Locked TMD   

Figure 14.24: Group walking with 2 Hz: Displacement at midspan with 
locked TMD.

Figure 14.25: Group walking with 2 Hz: Acceleration at midspan with 
locked TMD.
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14.8.2 Free TMD   

Figure 14.26: Group walking with 2 Hz: Displacement at midspan with 
free TMD.

Figure 14.27: Group walking with 2 Hz: Acceleration at midspan with 
free TMD.
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14.9 One person jumping with 2 Hz

One 72 kg-heavy person (G = 0.71 kN) keeps jumping at mid-
span of the footbridge. He is jumping with a frequency of
1.95 Hz, which is approximately equal to the first natural fre-
quency of the bridge.

Sought is the response of the bridge under this excitation. A
similar problem was solved theoretically in Section 6.1.3.

14.9.1 Locked TMD

First the maximum amplitudes are calculated by hand:

Static displacement:

(Measured: )

Amplification factor:

Maximum acceleration:

(Measured: )

Max. dyn. displacement:

Maximum displacement:
(Measured: )

dst
G

KH
------- 0.71

861
---------- 0.0008m 0.82mm= = = =

dst 0.93mm=

V 1
2ζ
------ 1

2 0.016⋅( )
------------------------- 31.25= = =

amax 4π2 1.952 0.0008 1.8 31.25⋅ ⋅ ⋅ ⋅
6.92m s2⁄

=
=

amax 7.18m s2⁄=

ddyn,max 0.82 1.8 31.25⋅ ⋅ 46.13mm= =

dmax 46.13 0.82+ 46.95mm= =

dmax 51.08mm=
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Test results   

Figure 14.28: One person jumping with 2 Hz: Displacement at midspan 
with locked TMD.

Figure 14.29: One person jumping with 2 Hz: Acceleration at midspan 
with locked TMD.
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14.9.2 Free TMD   

Figure 14.30: One person jumping with 2 Hz: Displacement at midspan 
with free TMD.

Figure 14.31: One person jumping with 2 Hz: Acceleration at midspan 
with free TMD.
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Estimate of the maximum vibration amplitude

Amplification factor: about 5.5 (from page 13-41)

Maximum dyn. displ.:

Maximum displacement:
(Measured: )

Maximum acceleration:

(Measured: ) 

14.9.3 Remarks about “One person jumping with 2 Hz”

• When jumping, the footbridge can be much strongly excited
than when walking.

• The achieved acceleration  is very
large and two jumping people could easily produce the lift-off
of the footbridge.

• The effect of the TMD can be easily seen in Figures 14.30 and
14.31. The maximum acceleration at midspan reduces from

 to , what, however, is still perceived as un-
pleasant. 

ddyn,max 0.82 1.8 5.5⋅ ⋅ 8.12mm= =

dmax 8.12 0.82+ 8.94mm= =

dmax 8.12mm=

amax 4π2 1.952 0.0008 1.8 5.5⋅ ⋅ ⋅ ⋅
1.22m s2⁄

=
=

amax 1.04m s2⁄=

amax 7.18m s2⁄ 73% g= =

7.18m s2⁄ 1.04m s2⁄


