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understanding and managing extremes

1 Course description

Aim of the course is that students develop a “feeling for dynamic problems” and acquire the theoretical
background and the tools to understand and to solve important problems relevant to the linear and, in
part, to the nonlinear dynamic behaviour of structures, especially under seismic excitation.

The course will start with the analysis of single-degree-of-freedom (SDoF) systems by discussing: (i)
Modelling, (ii) equations of motion, (iii) free vibrations with and without damping, (iv) harmonic, pe-
riodic and short excitations, (v) Fourier series, (vi) impacts, (vii) linear and nonlinear time history anal-
ysis, and (viii) elastic and inelastic response spectra.

Afterwards, multi-degree-of-freedom (MDoF) systems will be considered and the following topics will
be discussed: (i) Equation of motion, (ii) free vibrations, (iii) modal analysis, (iv) damping, (v) Rayleigh’s
quotient, and (vi) seismic behaviour through response spectrum method and time history analysis.

To supplement the suggested reading, handouts with class notes and calculation spreadsheets with se-
lected analysis cases to self-training purposes will be distributed.

Lecturer:  Dr. Alessandro Dazio, UME School

2 Suggested reading

[Choll] Chopra A., “Dynamics of Structures”, Prentice Hall, Fourth Edition, 2011.

[CPO3] Clough R., Penzien J., “Dynamics of Structures”, Second Edition (revised), Computer and
Structures Inc., 2003.

[Hum12] Humar J.L., “Dynamics of Structures”. Third Edition. CRC Press, 2012.

3 Software

In the framework of the course the following software will be used by the lecturer to solve selected ex-
amples:

[Mapl10] Maplesoft: “Maple 14”. User Manual. 2010

[Mic07]  Microsoft: “Excel 2007”. User Manual. 2007

[VN12]  Visual Numerics: “PV Wave”. User Manual. 2012

As an alternative to [VN12] and [Map10] it is recommended that students make use of the following
software, or a previous version thereof, to deal with coursework:

[Matl12] MathWorks: “MATLAB 2012”. User Manual. 2012
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4 Schedule of classes

April 19 - April 23, 2013

Date Time Topic
09:00 - 10:30 |1. Introduction
Day 1 2. SDoF systems: Equation of motion and modelling
Fri. April 19 11:00 - 12:30  |3. Free vibrations
2013 14:30 - 16:00  |Assignment 1
16:30 - 18:00  |Assignment 1
9:00 - 10:30  [4. Harmonic excitation
Day 2 11:00 - 12:30 |5. Transfer functions
Sat. April 20 —
2013 14:30 - 16:00 |6. Forced vibrations (Part 1)
16:30 - 18:00 |6. Forced vibrations (Part 2)
09:00 - 10:30 |7. Seismic excitation (Part 1)
Day 3 11:00 - 12:30 |7. Seismic excitation (Part 2)
Sun. April 21
2013 14:30 - 16:00  |Assignment 2
16:30 - 18:00 |Assignment 2
9:00-10:30 |8. MDoF systems: Equation of motion
Day 4 11:00 - 12:30  |9. Free vibrations
Mon. April 22| 14:30 - 16:00 [10. Damping
2013 11. Forced vibrations
16:30 - 18:00 |11. Forced vibrations
09:00 - 10:30  |12. Seismic excitation (Part 1)
Day 5 11:00 - 12:30 |12. Seismic excitation (Part 2)
Tue. April 23
2013 14:30 - 16:00 |Assignment 3
16:30 - 18:00 |Assignment 3

Page 2/2



Course “Fundamentals of Structural Dynamics” An-Najah 2013

Table of Contents

Table of Contents..........cooorirriiiiiiiiiicrr s i
Introduction
1.1 Goals of the course.........ccooimiiiiriiicc s 11
1.2 Limitations of the course.........ccccinriimininn 11
1.3 Topics Of the COUISe ... e 1-2
1.4 RefEreNCEeS ......eeiieircer e 1-3

Single Degree of Freedom Systems

2.1 Formulation of the equation of motion

2.1.1 Direct formulation..........ccccevenirniinninn s ————————
2.1.2 Principle of virtual Work.........cccccviiiniiiiini
2.1.3 Energy Formulation

2.2 Example “Inverted Pendulum?”.........ccccocciiiiiniiimmnnnnee e 2-4
0 |1 Uo e 1= | 11 ' 2-10
2.3.1 Structures with concentrated mass.......ccccceececiceeriiiicccccee e 2-10
2.3.2 Structures with distributed mass .........ccceeeerrrciin e 2-1
2.3.3  DamPiNg .....ceiiiiieiiie i e 2-20

Free Vibrations

3.1 Undamped free vibrations ........ccccceeeeecccciiccmrineni e 31
3.1.1 Formulation 1: Amplitude and phase angle.........c..cccoocrrimnininieriennseninns 341
3.1.2 Formulation 2: Trigonometric functions ..........ccoecciiiiinnicnnncenn s 3-3
3.1.3 Formulation 3: Exponential FUNCtions..........cccccoviiiceccmeennnncccceeeee s 3-4

Table of Contents Pagei

Course “Fundamentals of Structural Dynamics” An-Najah 2013

3.2 Damped free vibrations ..........cccoocciiiiinni e 3-6
3.2.1 Formulation 3: Exponential Functions.........cccccccviiiicccceveesnssccceeee e 3-6
3.2.2 Formulation 1: Amplitude and phase angle..........c.ccccoiriiiiniinnnninnneens 3-10

3.3 The logarithmic decrement ... 3-12

3.4 Friction damping ... ——— 3-15

Response to Harmonic Excitation

4.1 Undamped harmonic vibrations ..........cccccccomiiniiininnniiee s 4-3
4.1.1 Interpretation as abeat........ccccorreeicciiiiiii s
4.1.2 Resonant excitation (o =w,)

4.2 Damped harmonic vibration............ccccooieiiiiii e,

4.2.1 Resonant excitation (o =w,)

Transfer Functions

5.1 Force excitation.......ccccceiiiimnnininnn e
5.1.1 Comments on the amplification factor V
5.1.2 Steady-state displacement quantities ............ccccceveerriiiriresennse s
5.1.3 Derivating properties of SDoF systems from harmonic vibrations....... 5-10
5.2 Force transmission (vibration isolation) .........ccccccceccemiiicceeneccneenn. 5-12
5.3 Base excitation (vibration isolation).........ccccocciiiiiiiiiiniiee, 5-15

5.3.1 Displacement excitation

5.3.2 Acceleration excitation
5.3.3 Example transmissibility by base excitation ..........ccccovimiriiniiiiinninnnns 5-20

5.4 Summary Transfer FUNCLIONS ........cccoeiciiiiiicce e 5-26

Forced Vibrations

6.1 Periodic excitation .........cccocviiiiiiiin 6-1
6.1.1 Steady state response due to periodic excitation.........c.ccocecrrriinriiiennnns 6-4
Table of Contents Pageii



Course “Fundamentals of Structural Dynamics” An-Najah 2013

[ I o - 11 = 1 - N 6-5
6.1.3 Example: “Jumping on a reinforced concrete beam™..........c..ccccrrcinnnnnne 6-7
6.2 Short excitation ........ccocceiiirin e ————— 6-12
6.2.1  SteP fOrCe ...t ———————— 6-12
6.2.2 Rectangular pulse force excitation ............ccccieiririnnniienese s 6-14
6.2.3 Example “blast aCtion” .......ccccoeeiiccmmmiirirrsceerre e 6-21

Seismic Excitation

7.1 INtroducCtion .......ccceeiiiiiiirr e —————— 71
7.2 Time-history analysis of linear SDoF systems ..........cccccociinriiiiinnnnn 7-3
7.21 Newmark’s method (see [NEWS59]) ......ccccevimrrirriimnsnni s 7-4
7.2.2 Implementation of Newmark’s integration scheme within
the Excel-Table “SDOF_TH.XIS” .......cccoorirnirererrisesesese s 7-8
7.2.3 Alternative formulation of Newmark’s Method. .........ccocoriiireriniicnnnnne 7-10
7.3 Time-history analysis of nonlinear SDoF systems ........ccccccceeenn... 7-12
7.3.1  Equation of motion of nonlinear SDoF systems .........ccccceiiriericnncnnnne 713
7.3.2 Hysteretic rules.......ccocoiiiininiris e
7.3.3 Newmark’s method for inelastic systems..
7.3.4 Example 1: One-storey, one-bay frame ..........cccccviiiriciinnnsenscc e
7.3.5 Example 2: A 3-storey RC wall ..o

7.4 Solution algorithms for nonlinear analysis problems
7.4.1 General equilibrium condition.......c.cccecccciieiiiccsciee e
7.4.2 Nonlinear static analysis ........cccueeiriminmnn s

7.4.3 The Newton-Raphson Algorithm.........cccconrimiiniiciin s
7.4.4 Nonlinear dynamic analySes .........ccourvmririsseriinssmnmnsssssssssss s sssseens 7-35

7.4.5 Comments on the solution algorithms for
nonlinear analysis problems...........cccoooiinin 7-38

7.4.6 Simplified iteration procedure for SDoF systems with
idealised rule-based force-deformation relationships..........ccccceevernnnnee 7-41

Table of Contents Pageiii

Course “Fundamentals of Structural Dynamics” An-Najah 2013

7.5 Elastic response Spectra........cccccevimririismiriinssens s
7.5.1 Computation of response spectra........ccccccccrrereerrsseericseessssseesseseessssnees
7.5.2 Pseudo response quantities..........ccuvrrrmirieinesnnnnse e
7.5.3 Properties of linear response SpPectra ........cccccvvvvririnnnsnnnne s

7.5.4 Newmark’s elastic design spectra ([Cho11])
7.5.5 Elastic design spectra in ADRS-format (e.g. [Faj99])
(Acceleration-Displacement-Response Spectra) ........cccccvrvrierisnninnnns 7-56
7.6 Strength and DUCLIlity ..........ccccmiiiriiieinccire e
7.6.1  lllustrative @Xample ...
7.6.2 “Seismic behaviour equation” ..........ccceerriiinininn e —————
7.6.3 Inelastic behaviour of a RC wall during an earthquake ..
7.6.4 Static-cyclic behaviour of a RC wall .........ccoociiiiiniiincneeee e
7.6.5 General definition of ductility ........c.cccovvmiriiiiinini e
7.6.6 Types of ductilities .........cccocirrmiiiiniiin e ——

7.7 Inelastic resSpoNse SPECLra ......ceeeeeeuerrrrrsrrsrrssrrrrre e e rreeerrennnnsssnnssnnnns

7.7.1 Inelastic design SPeCra........ccceiriiriiiininnnir e

7.7.2 Determining the response of an inelastic SDOF system
by means of inelastic design spectra in ADRS-format............ccccvviuennnes 7-80

7.7.3 Inelastic design spectra: An important note............cccoccerriiniinnnninnnnene 7-87
7.7.4 Behaviour factor g according to SIA 261 ..........ccceciniiiiinnnnnrn s 7-88

7.8 Linear equivalent SDOF system (SDOFg) .....cccccevimeriierninsnnnisinennns 7-89
7.8.1 Elastic design spectra for high damping values..........ccccoiiiiiniinnnnenn. 7-99

7.8.2 Determining the response of inelastic SDOF systems
by means of a linear equivalent SDOF system and
elastic design spectra with high damping ........cccceccovimninninnincinnn, 7-103

e T 3 =Y =Y (= 1o = 7-108

Multi Degree of Freedom Systems

8.1 Formulation of the equation of motion........ccccceeviiiciciierneenieecec, 8-1
8.1.1 Equilibrium formulation.
8.1.2 Stiffness formulation ... —————
Table of Contents Pageiv



Course “Fundamentals of Structural Dynamics” An-Najah 2013
8.1.3 Flexibility formulation .........cccciriiiiiniic 8-3
8.1.4 Principle of virtual Work.........cccvviiiiiniin 8-5
8.1.5 Energie formulation............ccoioieiiiiiinieieie s 8-5
8.1.6 “Direct Stiffness Method™ ...........cccermnvirrinsinins 8-6
8.1.7 Change of degrees of freedom..........cceerrriiinirirnninsn s 8-11
8.1.8 Systems incorporating rigid elements with distributed mass ............... 8-14

9 Free Vibrations

9.1 Natural vibrations ... 9-1

9.2 Example: 2-DOF System ......ccccccniiminiiminninn s 9-4
9.2.1 EIgenvalues .......cccciiiiiiiieiiiiinisne e 9-4
9.2.2 Fundamental mode of vibration...........cccoeoeiiiiiirenn s 9-5
9.2.3 Higher modes of vibration.........ccccoooiiiiiniiinii s 9-7
9.2.4 Free vibrations of the 2-DoF system

9.3 Modal matrix and Spectral matrix.........ccccccrrrerriiiiccccccsseereeee e, 9-12

9.4 Properties of the eigenvectors.........cccccceceiriicccrineccseee s 9-13
9.4.1 Orthogonality of eigenvectors ...........ccccriiiniiirsnns s 9-13
9.4.2 Linear independence of the eigenvectors.........ccccocrriiriiiccinniicninicnns 9-16

9.5 Decoupling of the equation of motion.........ccccccciriiiiiiiiicccceiies 917

9.6 Free vibration resSponse.........oooeccccccciiicrcrr e

9.6.1 Systems without damping.........ccccriiriiiniin s

9.6.2 Classically damped systems...

10 Damping
10.1Free vibrations with damping .......cccccccciiiiiiinnci e 10-1
10.2Example .10-2
10.2.1 Non-classical damping .......ccccccmmiiiiiiimmr s 10-3
10.2.2 Classical dampPing.........cccrrroimriiierrinieriie e s 10-4

Table of Contents Pagev

Course “Fundamentals of Structural Dynamics” An-Najah 2013

10.3Classical damping matrices ........cccccocvvimiirriieninncr s 10-5
10.3.1 Mass proportional damping (MpD) .......cccceviirrirmrnieerre s 10-5
10.3.2 Stiffness proportional damping (SPD)........cccrrrrrrimrirneninnee e 10-5
10.3.3 Rayleigh damping......cccccrriiminiiiiniie e 10-6

10.3.4 Example

11 Forced Vibrations

11.1Forced vibrations without damping .........cccccciiiiiinnriiiee, 111
11.1.1 INtroduction ... —————— 111
11.1.2 Example 1: 2-DOF SyStem.......cccviiiiiimninie s 11-3
11.1.3 Example 2: RC beam with Tuned Mass Damper (TMD) without damping...

1-7

11.2Forced vibrations with damping ..........ccccorriiiiinicice e, 1113
11.2.1 INtroduction ... ————— 11-13

11.3Modal analysis: A SUMMArY ........cccoiiiiiiiminrire e 11-15

12 Seismic Excitation

12.1Equation of Motion.........cccciiiiiiir s 121
12.1.1 INtroduCtioN.......ceiie e ————— 121
12.1.2 Synchronous Ground MOtioN..........ccciireinin i 12-3
12.1.3 Multiple support ground motion ..........ccecceviimniiinsnnn 12-8

12.2Time-history of the response of elastic systems..........ccccceruueenn. 12-18

12.3Response spectrum method ..........cccccmmiiiiiiiiiiiicci s
12.3.1 Definition and characteristics
12.3.2 Step-by-step procedure ..o

12.4Practical application of the response spectrum method
to @ 2-DOF syStem .......ccccciiiiiiii s 12-29
12.4.1 DyNamicC Properties ........ccccerrrrriirnimnnnenisses s s s ssane s 12-29
12.4.2 Free vibrations.......ccccveiiimnininicninnn s 12-31

Table of Contents Pagevi



Course “Fundamentals of Structural Dynamics” An-Najah 2013

12.4.3 Equation of motion in modal coordinates...........cccooviumniniininicnseninnans 12-38
12.4.4 Response spectrum method ... 12-41
12.4.5 Response spectrum method vs. time-history analysis ...........cccceueenne. 12-50

13 Vibration Problems in Structures

13.1Introduction

13.1.1 Dynamic @ction .......ccccceeiriimmiiiirs e s 13-2
B TR B £ 0= (=1 = T o N 13-3

13.2Vibration limitation

13.2.1 Verification strategies .........ccccvrviriiinimiisn e 13-4
13.2.2 COUNtErMEASUIES ......cevcuririiiririiss s n s an s sanenaa 13-5
13.2.3 Calculation methods ..o e 13-6
13.3People induced vibrations..........cccceciimiiinni e, 13-8
13.3.1 EXCitation fOrCes.......ccuiiiiriiiniirrer e 13-8
13.3.2 Example: Jumping on an RC beam.........cccoccciriermniiennsne e
13.3.3 FOOtBridges........ooeriimniirirerrr e
13.3.4 Floors in residential and office buildings .. .
13.3.5 Gyms and dance halls.........cccciririiiniirce e
13.3.6 Concert halls, stands and diving platforms............ccccniiinieniinnininnnn. 13-30
13.4Machinery induced vibrations.........cccccciiiiiiinciini s 13-30
13.5Wind induced vibrations............ccccoiriiiiiniii s 13-31
13.5.1 Possible effeCts ......cccocoerieciiecerer e 13-31
13.6 Tuned Mass Dampers (TMD) ......ccccuceceriemicsimeerisseree s ssee e s s s ssneeenas 13-34
13.6.1 INtrodUCHiON.......cociiiiite e ——— 13-34
13.6.2 2-DOF SYSteM ...cocueiriiriririr 13-35
13.6.3 Optimum TMD parameters.........cccceccceerrrceerisseersssseessssseesssssesssssnessssssessas 13-39

13.6.4 Important remarks on TMD...

Table of Contents Page vii

Course “Fundamentals of Structural Dynamics” An-Najah 2013

14 Pedestrian Footbridge with TMD

14.1Test unit and instrumentation...........cccccoiiciiii e 14-1
QLI o= = 14 =Y = 14-4
14.2.1 Footbridge (Computed, without TMD).. ..14-4
14.2.2 Tuned Mass Damper (Computed) ........ccccceerierrirrrnesnsee e 14-4
14.3TeSt Programme ..........cccceereeriiiiiicsssssssnrrre e s s s s s smnnr s s e s e esssssssssnes 14-5
14.4Free decay test with locked TMD.........ccccoiiiimiinncrn e
14.5Sandbag test.........cccerririniinnniiene
14.5.1 Locked TMD, Excitation at midspan ...
14.5.2 Locked TMD, Excitation at quarter-point of the span .........cccccecuueenne 1412
14.5.3 Free TMD: Excitation at midspan ........cccccecccerresccenrcccenscssce s cesee s 14-15
14.60ne person walking with 3 Hz...........cccooimiiiiiiiecceererrene s 1417
14.70ne person walking with 2 Hz............ccoooiiiniicreeeees 14-20
14.7.1 Locked TMD (Measured)........ccccoerrerremrrseesseessnsssesssse s smsssses e sssme e sas 14-20
14.7.2 Locked TMD (ABAQUS-Simulation) .... 14-22
14.7.3 Free TIMD ..ottt e s 14-24
14.7.4 Remarks about “One person walking with 2 Hz” ..........cccccooiiniinncene. 14-25
14.8 Group walking with 2 Hz
14.8.1 LOCKEd TMD ...
14.8.2 Free TMD ...

14.90ne person jumping with 2 Hz

14.9.1 Locked TMD ......ccoviimnminimniiini s

14.9.2 Free TMD ...t

14.9.3 Remarks about “One person jumping with 2 Hz” .........ccccooiiiniiiiinnnnne 14-34
Table of Contents Page viii



Course “Fundamentals of Structural Dynamics” An-Najah 2013

1 Introduction

1.1 Goals of the course

Presentation of the theoretical basis and of the relevant tools;

General understanding of phenomena related to structural dy-
namics;

* Focus on earthquake engineering;

* Development of a “Dynamic Feeling”;

Detection of frequent dynamic problems and application of ap-
propriate solutions.

1.2 Limitations of the course

* Only an introduction to the broadly developed field of structural
dynamics (due to time constraints);

» Only deterministic excitation;

* No soil-dynamics and no dynamic soil-structure interaction will
be treated (this is the topic of another course);

* Numerical methods of structural dynamics are treated only
partially (No FE analysis. This is also the topic of another
course);

* Recommendation of further readings to solve more advanced
problems.
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1.3 Topics of the course

1) Systems with one degree of freedom

- Modelling and equation of motion
- Free vibrations with and without damping

- Harmonic excitation

2) Forced oscillations

- Periodic excitation, Fourier series, short excitation
- Linear and nonlinear time history-analysis

- Elastic and inelastic response spectra

3) Systems with many degree of freedom

- Modelling and equation of motion
- Modal analysis, consideration of damping
- Forced oscillations,

- Seismic response through response spectrum method and
time-history analysis

4) Continuous systems

- Generalised Systems

5) Measures against vibrations

- Criteria, frequency tuning, vibration limitation
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2 Single Degree of Freedom Systems

2.1 Formulation of the equation of motion

2.1.1 Direct formulation

1) Newton's second law (Action principle)

_dl_d, _
= qi - qm) = mi (1= Impulse) (2.1)

The force corresponds to the change of impulse over time.

u(t)

fe(t)
>

E(t)

— i (1)~ £,(t) + F(t) = mii(t) (2.2)

Introducing the spring force f, (t) = ku(t) and the damping
force f_(t) = cu(t) Equation (2.2) becomes:

mu(t) +cu(t) +ku(t) = F(t) (2.3)
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2) D’Alembert principle
F+T =0 (2.4)

The principle is based on the idea of a fictitious inertia force
that is equal to the product of the mass times its acceleration,
and acts in the opposite direction as the acceleration

The mass is at all times in equilibrium under the resultant
force F and the inertia force T = —mii.

y = x(t) +1+u,+u(t) (2.5)
yo= X+ (2.6)
T =-my = —m(X + 1) (2.7)

F = -k(ug+u)—-cu+mg (2.8)
= —/k/us—ku—cu+1;a/g
= —ku-cu

F+T =0 (2.9)
—ci—ku-mX-mi = 0 (2.10)

mi +cu+ku = -mx (2.11)

 To derive the equation of motion, the dynamic equilibrium for
each force component is formulated. To this purpose, forces,
and possibly also moments shall be decomposed into their
components according to the coordinate directions.
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2.1.2 Principle of virtual work

du (2.12)

+ Virtual displacement = imaginary infinitesimal displacement

» Should best be kinematically permissible, so that unknown reac-
tion forces do not produce work

SA; = 8A, (2.13)

» Thereby, both inertia forces and damping forces must be consid-
ered

(f,+f, +f)ou = F(t)du (2.14)

2.1.3 Energy Formulation

* Kinetic energy T (Work, that an external force needs to pro-
vide to move a mass)

* Deformation energy U (is determined from the work that an ex-
ternal force has to provide in order to generate a deformation)

* Potential energy of the external forces V (is determined with
respect to the potential energy at the position of equilibrium)

» Conservation of energy theorem (Conservative systems)

E=T+U+V =T +U_ +V_ = constant (2.15)
dE
¥ Ti 0 (2.16)
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2.2 Example “Inverted Pendulum”

Direct Formulation

sin(Q;) ~ @,

cos(p,) ~1
| Isin(gp,) |

Spring force: F, = a-sin(¢,) - k=a- @, -k (2.17)

Inertia force: F o=¢;-1'm (2.18)

External force: Fp =m-g (2.19)
Equilibrium

Fk-a-cos((p])+Fm-l—Fp-l-sin((pl) =0 (2.20)
2 Single Degree of Freedom Systems Page 2-4
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m-12-¢1+(a2-k—m-g-1)-(pl=O (2.21)

Circular frequency:

K 2 km-o- 2
o= |21 Ja k m2 g-l_ Ja-k g (2.22)
M, m-1 m -1

The system is stable if:
®>0: az-k>m-g-l (2.23)

Principle of virtual work formulation

m
Q1
= F,sin(¢,)

Fycos(9,)
k y
I-/\/WV\r _ Eod ;

sin(Q,) ~ @,
cos(p,) ~1

I
I
I
I
I
I
I
I
|
I
=
I
I
I
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Spring force: F, - cos(@;)=a @,k (2.24)
Inertia force: F,=¢;-1'm (2.25)
External force:  F -sin(@,)~m-g- ¢, (2.26)

Virtual displacement:
du, = 6¢,-a, du, = 8¢, 1 (2.27)
Principle of virtual work:
(Fy - cos(9,)) - duy + (F, - (Fp -sin(¢,))) - du,, = 0 (2.28)
(a-9;-K)- 8, -a+ (-1 m-m-g-g) 3, -1=0 (2.29)

After cancelling out 3¢, the following equation of motion is ob-
tained:

m-1°-¢i+(a -k-m-g-1)-¢, =0 (2.30)

The equation of motion given by Equation (2.30) corresponds to
Equation (2.21).
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Energy Formulation

k

e

m O__ (A-cos(@ ) | ———_ _
- I Ep()l,p \\
0.51¢,2 i v,
| a sin(Q,) Ekin,m
: Edef,k
[
1 [
[
I 9
a rs\
|
: sin(Q,) ~ @,
g S cos(p,) ~1
(0]
P _ 1 . 2 1 2
Spring: Edef,k =5 -k-[a-sin(@))]” = > k-(a-9,)" (2.31)
1 2 1 . 2
Mass:  Eyjpm = 5 m vy = 5-m-(¢1-1) (2.32)
Epot,p = —(m-g)-(1-cos(py))-1 (2.33)

by means of a series development, cos(¢,) can be
expressed as:

(pz (p4 2k
S S| kX
cos(@;) = 1 + +(-1) 20!

R T +...(2.34)

2 Single Degree of Freedom Systems Page 2-7
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for small angles ¢, we have:

2

2
cos(@,) = 1_([)_ and %

> = 1 —cos(@,)
and Equation (2.33) becomes:

2
Eotp = —(m-g-05-1-9))

Energy conservation:

E. .= Edef’k + Ekin,m +E = constant

tot pot,p
-2
E = %(m-lz)-(p1+%(k-a2—m-g-l)-(p% = constant

Derivative of the energy with respect to time:

3—];: =0 Derivation rule: (gef)' = (g'ef) - f
(m-1)-¢-@+(k-ao—m-g-)-¢,-¢; =0
After cancelling out the velocity ¢ :

m-12-('[')lJr(az-k—m-g-l)-(p1 =0

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

The equation of motion given by Equation (2.41) corresponds to

Equations (2.21) and (2.30).

2 Single Degree of Freedom Systems
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Comparison of the energy maxima

1 . 2
KE = E‘m'((Pl,max‘l) (2.42)
1 2 1 2

By equating KE and PE we obtain:

: 2 k-m- gl
cpl,max{ £ ].(pl (2.44)

m - 12
(bl,max = -0 (245)
* o is independent of the initial angle ¢,

* the greater the deflection, the greater the maximum velocity.

2 Single Degree of Freedom Systems Page 2-9
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2.3 Modelling

2.3.1 Structures with concentrated mass

Water tank

IT/?;E::IOOOt F(t) /\ F(t)

RC Walls in the :

longitudinal direction

20000

Ground

b =350

PP s Vi
\/0(\3:::(5\00 O;reo;:e""e SR
3EI
k= k=2—
H
Frame with rigid beam
RV
Beam, El>>El Massm=50c My
12EI 7
k=2— 1
Column, Elg H
M) -
. ik }
mii + ku = F(t) (2.46)
2 Single Degree of Freedom Systems Page 2-10
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2.3.2 Structures with distributed mass L
SA, =J’ (EIu"- 8[u"])dx (2.53)
0
* Transformations:
fi(x,1) u" = y"U and i = yU (2.54)
El(x) u(x,t) = y(x)U(t)
= m(x) » The virtual displacement is affine to the selected deformation:
ou = yoU and o[u"] = y"oU (2.55)
X
» Using Equations (2.54) and (2.55), the work 8Aa produced by the
u external forces is:
| >
L . L
Deformation: u(x, t) = y(x)U(t) (2.47) SA, = — j (myU - ydU)dx + j (f- ydU)dx (2.56)
0 0
External forces: t(x, t) = —mii(x, t) Lo L
= dU|-U dx+| fyd
f(x, 1) (2.48) [ IO e IO v XJ
* Principle of virtual work * Using Equations (2.54) and (2.55) the work 8A; produced by the
internal forces is:
dA, = 0A, (2.49)
L L
. . 8A; = [ (EIy"U - y"8U)dx = SU[UI (EI(w")z)de (2.57)
8A, = [ (t-8uwydx+[ (f-8u)dx (2.50) 0 0
0 0

L L + Equation (2.49) is valid for all virtual displacements, therefore:
= —j (mu'-su)dx+j (f- &u)dx . . .
0 0 U[ (Bl(y"))dx = -0 mwzdx+j fyrdx (2.58)

L 0 0 0
SA; = j (M - 8¢)dx where: (2.51) . .
0 mU+k U=F (2.99)

M = EIu" and 8¢ = d[u"] (2.52)
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 Circular frequency

L
| E1ym?)dx
2 k 70 2 60
n T L 5 ( . )
m .[ my~dx
0

-> Rayleigh-Quotient

* Choosing the deformation figure

- The accuracy of the modelling depends on the assumed
deformation figure;

- The best results are obtained when the deformation figure
fulfills all boundary conditions;

- The boundary conditions are automatically satisfied if the
deformation figure corresponds to the deformed shape due
to an external force;

- A possible external force is the weight of the structure act-
ing in the considered direction.

* Properties of the Rayleigh-Quotient

- The estimated natural frequency is always larger than the
exact one (Minimization of the quotient!);

- Useful results can be obtained even if the assumed defor-
mation figure is not very realistic.

2 Single Degree of Freedom Systems Page2-13
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« Example No. 1: Cantilever with distributed mass

—

M 1

EI, m

y = l—cos(g—])j, y"' = (%)zcos(g%) (2.61)

m = Jtm(l - cos(%})zdx +y’(x = L)M (2.62)
3nx78sin(72t—3L+2cos(§—;j sin(g—;{)L )
= gm .

= %mLH\/{ = 023mL+M
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K = EI(£)4J‘Z(COS(;—;))2dX (2.63)

L
X + 2 cos(zc—@ sin(% L
B El(n 4 1 2 2
- r) 2 T
0
t EI El 3EI
-5 5 3.04. =~
L L’ L
sz SEI 3 (2.64)
(0.23mL + M)L

» Check of the boundary conditions of the deformation figure

y(0) =07 ->y(x) = l—cos@—;‘): y(0) = 0 OK!
y'(0) =07 ->y'(x) = %sin(g—ﬁ: y'(0) = 0 OK!

WL = 02>y = (2 eos(B): yr) = 0 oK

Course “Fundamentals of Structural Dynamics” An-Najah 2013
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« Example No. 2: Cantilever with distributed mass

M, y=1
Ll M | vy (x=L/2)

L2
o
B8
>

y = l—cos(;c—])j, y"' = (211)2005(;—9 (2.65)

e Calculation of the mass m*

*

m = _[Zm(l - cos(g—:))zdx + wz(x = %)Ml +yl(x = L)M, (2.66)

*  (3n—8) m))? 2
m' = 2Bt (1-cos(§)) M+ 170 M, (2.67)
m = (3“_8)mL+(3_2ﬁ) M, + M, (2.68)
21 2
m’ = 0.23mL +0.086M, + M, (2.69)
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» Calculation of the stiffness k*

K 151(5’7—_)4 IZ(COS(%Dde (2.70)

4
o Bl _ 4, El_3EI (2.71)

32 3 1

« Calculation of the circular frequency ®

o - 3.04E1 : (2.72)
(0.23mL + 0.086M, + M,)L

Specialcase:m = 0 and M, = M, = M

® = /LEI3 - 1.673 |[-EL (2.73)
(1.086M)L ML

The exact first natural circular frequency of a two-mass oscillator
with constant stiffness and mass is:

o= [22EL - 652 | =L (2.74)
(1.102M)L ML

As a numerical example, the first natural frequency of a
L = 10m tall steel shape HEB360 (bending about the strong ax-
is) featuring two masses M, = M, = 10t is calculated.

2 Single Degree of Freedom Systems Page2-17
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EI = 200000 - 431.9x10° = 8.638x10"°Nmm® (2.75)

El = 8.638x10"kNm” (2.76)

By means of Equation (2.73) we obtain:

® = 1.673 / =L = 1673 (20380 638X10 — 49170 (2.77)
10-10°

_ 1 49170 _
f= 2n o = 220 = 0783Hz (2.78)

From Equation (2.74):

_ L 652 EI _ L 652 8. 638><10 — 0.773Hz (2.79)
T M 10-10°

The first natural frequency of such a dynamic system can be cal-
culated using a finite element program (e.g. SAP 2000), and it is
equal to:

T = 1.2946s, f = 0.772Hz (2.80)

Equations (2.78), (2.79) and (2.80) are in very good accordance.
The representation of the first mode shape and corresponding
natural frequency obtained by means of a finite element program
is shown in the next figure.
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M =10t

M =10t

HEB 360

————

SAP2000 v8 - File:HEB_360&Mode 1 Period 1.2946 seconds) - KN-m Units

2 Single Degree of Freedom Systems
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2.3.3 Damping
* Types of damping

Damping

yd T~

Internal External

4 AN

Material Contact areas
within the structure
Hysteretic ReIeXive External contact
(Viscous, movements (Non-structural
Friction, between parts of elements, Energy
Yielding) the structure radiation in the

(Bearings, Joints, ground, etc.)

etc.)

 Typical values of damping in structures

Material Damping

Reinforced concrete (uncraked) 0.007 - 0.010
Reinforced concrete (craked 0.010 - 0.040
Reinforced concrete (PT) 0.004 - 0.007
Reinforced concrete (partially PT) 0.008 - 0.012
Composite components 0.002 - 0.003

Steel 0.001 - 0.002

Table C.1 from [Bac+97]
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» Bearings * Dissipators

Displacement

Displacement

Source: A. Marioni: “Innovative Anti-seismic Devices for Bridges”. o _ o _ _
[SIA03] Source: A. Marioni: “Innovative Anti-seismic Devices for Bridges”.

[SIA03]
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3 Free Vibrations

“A structure undergoes free vibrations when it is brought out of
its static equilibrium, and can then oscillate without any external
dynamic excitation”

3.1 Undamped free vibrations
mii(t) + ku(t) = 0 (3.1)

3.1.1 Formulation 1: Amplitude and phase angle

* Ansatz:
u(t) = Acos(w,t—0) (3.2)
ii(t) = A cos(o t— o) (3.3)

By substituting Equations (3.2) and (3.3) in (3.1):

A(-®-m +k)cos(@ t—0) = 0 (3.4)
—@'m+k =0 (3.5)
o, = ~k/m “Natural circular frequency” (3.6)

Course “Fundamentals of Structural Dynamics” An-Najah 2013
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* Relationships

o, = ~k/m [rad/s]: Angular velocity (3.7)
(Dn . .
f = T [1/s], [HZ]: Number of revolutions per time  (3.8)

T, = i—n [s]: Time required per revolution (3.9)
n
» Transformation of the equation of motion
ii(t) + oou(t) = 0 (3.10)
* Determination of the unknowns A and ¢:

The static equilibrium is disturbed by the initial displacement
u(0) = u, and the initial velocity u(0) = v,:

A= u§+(w—)2 . tang = (3.11)

n uO(Dl‘l

* Visualization of the solution by means of the Excel file given on
the web page of the course (SD_FV_viscous.xlIsx)
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3.1.2 Formulation 2: Trigonometric functions

mi(t) +ku(t) = 0 (3.12)
* Ansatz:

u(t) = A cos(m,t) +A,sin(w,t) (3.13)

ii(t) = A, cos(,t) — A, sin(o, t) (3.14)

By substituting Equations (3.13) and (3.14) in (3.12):

A (- oim+k)cos(®,t) + Ay(—o-m +K)sin(o,t) = 0 (3.15)

—@mtk =0 (3.16)
o, = ~k/m “Natural circular frequency” (3.17)

* Determination of the unknowns A, and A,

The static equilibrium is disturbed by the initial displacement
u(0) = u, and the initial velocity u(0) = v:

A =y, A, = =2 (3.18)

Course “Fundamentals of Structural Dynamics”
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3.1.3 Formulation 3: Exponential Functions

miu(t) +ku(t) = 0 (3.19)
* Ansatz:
u(t) = M (3.20)
A
i(t) = 2% (3.21)
By substituting Equations (3.20) and (3.21) in (3.19):
mA*+k = 0 (3.22)
>k
AT = — (3.23)
x=+iJ£ = +i® (3.24)
= = o, :
The complete solution of the ODE is:
u(t) = Cpe e (3.25)
and by means of Euler’s formulas
eioc n e—i(x i(x_ efi(x
coso = — sing, = 5 (3.26)
io .. —io ..
e = cos(o)tisin(a) ,e ~ = cos(o)—isin(a) (3.27)
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Equation (3.25) can be transformed as follows: 3.2 Damped free vibrations
u(t) = (C; +Cy)cos(wt) +i(C; - C,)sin(o,t) (3.28) mii(t) + cu(t) + ku(t) = 0 (3.30)
u(t) = A cos(o,t) + A,sin(w,t) (3.29) - In reality vibrations subside

Equation (3.29) corresponds to (3.13)! Damping exists

It is virtually impossible to model damping exactly

From the mathematical point of view viscous damping is
easy to treat

Damping constant: ¢ [N . I%J (3.31)

3.2.1 Formulation 3: Exponential Functions

miu(t) + cu(t) +ku(t) = 0 (3.32)
* Ansatz:
)
() = e = aeM () = A% (3.33)
By substituting Equations (3.33) in (3.32):
(sz +Ac+ k)ekt =0 (3.34)
Mm+ict+k =0 (3.35)
o= -+ L[ akm (3.36)
2m  2m
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* Critical damping when: ¢2 —4km = 0

¢, = 24/km = 20,m (3.37)

« Damping ratio
- __¢< __¢

¢ = o  jm Zom (3.38)
* Transformation of the equation of motion

miui(t) +cu(t) +ku(t) = 0 (3.39)

.. C. k B

u(t) + fﬁu(t) + r-r—lu(t) =0 (3.40)

ii(t) + 2L, u(t) + @ou(t) = 0 (3.41)
» Types of vibrations:

¢ = 69—<1 : Underdamped free vibrations

¢ = Ci =1: Critically damped free vibrations

L=<>1: Overdamped free vibrations
3 Free Vibrations Page 3-7
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» Types of vibrations

1

. ——Underdamped vibration
\ — Critically damped vibration
\ —=-Overdamped vibration
0.5 f
=
32 o}
e
S
-0.5 f
-1 2 2 2 2 2 2 2
0 0.5 1 1.5 2 25 3 3.5 4

tlTn [']
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Underdamped free vibrations { <1

By substituting:
_c _ _¢c _ _c _k
€= & ke 2om and o p~ (3.42)
in:
2
__c 12 SR (I
2m- 2m"° 4km 2m "~ (Zm) m (3.43)
it is obtained:
A=-Co,* ./wi@z—mi = — CmnimnA/CZ—l (3.44)
A= —Co tio J1-C (3.45)
0y = O, 1—@2 “damped circular frequency” (3.46)
A =-Co, tiny (3.47)
The complete solution of the ODE is:
u(t) = et OO o IO (3.48)
u(t) = ¢ e, e+ o ) (3.49)
u(t) = efgw“t(Alcos(wdt)+Azsin(0)dt)) (3.50)
3 Free Vibrations Page 3-9
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The determination of the unknowns A, and A, is carried out as
usual by means of the initial conditions for displacement
(u(0) = u,) and velocity (1u(0) = v, ) obtaining:

Vo Lo U,

A =g Ay = S (3.51)

3.2.2 Formulation 1: Amplitude and phase angle

Equation (3.50) can be rewritten as “the amplitude and phase
angle”

u(t) = Aeicmntcos(wdt—q)) (3.52)
with
2 (Vo Coup? v+ oy,
A= u0+(—) Ctang = 2= n0 (3.53)
g4 Wqlg

The motion is a sinusoidal vibration with

circular frequency o4 and decreasing amplitude Aewa“t
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* Notes

- The period of the damped vibration is longer, i.e. the vibra-
tion is slower

1 =

0.9 ~

0.8
0.7 \
. / 2
l_vos 0y = oN1-C
=05 |
|-
04 | | T
0.3 \ /1 B C2
0.2
0.1
0

0 0102 03 04 05 06 0.7 0.8 09 1
Damping ratio {

- The envelope of the vibration is represented by the follow-
ing equation:

- Vot CO up 2
u(t) = Ae "™ with A = Ju§+(w) (3.54)
Wy

- Visualization of the solution by means of the Excel file giv-
en on the web page of the course (SD_FV_viscous.xlsx)
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3.3 The logarithmic decrement

20 \
| Td | —Free vibration
15
"o L
10 U1

Displacement
o
p—"
e ——
"
>
D
S
)
)

Time (s)

» Amplitude of two consecutive cycles

u, Aeicw"tcos((ﬂdt -b)
U e T cos (o (t+ Ty) — 0)
with

efgmn(t+Td) — eicwntefcwn’rd

cos(y(t+Ty)—¢) = cos(wgt+myTy—0) = cos(wyt—0)

0 1 2 3 4 5 6 7 8 9 10

(3.55)

(3.56)
(3.57)
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we obtain:

1 _ eg(‘oan
7C(’0an

:|:
S

1 e

* Logarithmic decrement

(3.58)

5 = ln(?) — Lo T, - ﬂ—fznc GFCsmall)  (3.59)

1 /1_(;

The damping ratio becomes:

5 _ 8

= if  small 3.60
41"+ 0
10 I I
9 —Exact equation /
-=-Approximation

< s i /
o /
£ 7
3 / i
o 6 / __-
a / i
o 5r -
E 4 B /—”"
K ‘a‘
5 3 =
S ="
QS 2

1 —

0 L L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Damping ratio
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« Evaluation over several cycles

L LS L) uN
_ 1 o
5 = Nln(uN) (3.62)
+ Halving of the amplitude
1, (Y 1
—In| — -

21 21 ON 10N
Useful formula for quick evaluation

» Watch out: damping ratio vs. damping constant
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3.4 Friction damping

Direction of motion <——

u(t) u(t)
fi.(H) fi(t)
k k
fu fu

a) b)

Direction of motion —p

~f, (t)~f, = mii(t) — £ () + £, = mii(t)

mii(t) + ku(t) = mii(t) + ku(t) = f,

 Solution of b)
f
u(t) = Alcos(o)nt)JrAzsin((n)nt)ﬂLuH with u, = _kE (3.64)
u(t) = —o,A;sin(o,t) + ® A,cos(w,t) (3.65)

by means of the initial conditions u(0) = u, , u(0) = v, we ob-
tain the constants:

* Solution of a): Similar, with —u, instead of +uy,

3 Free Vibrations Page 3-15
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* Free vibrations
It is a nonlinear problem!

20

—pFree vibration | |
—Friction force

15

N A
5 /™ \

Displacement
h o
L
"
<

Figure: f=0.5 Hz , up=10, v5 = 50, us = 1
 Calculation example:
- Step 1:

Initial conditions u(0) = u; , u(0) = 0

A =up-u, , Ay =0 (3.66)
u(t) = [ug—uyJcos(o,t) +u, 0St<£; (3.67)
. T
End displacement: u(a—) = [ug—u, J=1) +u, = —uy+2u,

n
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- Step 2: » Comparison Viscous damping vs. Friction damping
Initial diti 0) = —uy+2u, ,u0) =0 . .
nitia condifions u (o) Bo 2ty 0(0) Free vibration: f=0.5 Hz , ug=10, vg = 50, us =1
Ap =u(0)tu, = -uy+2u,+tu, =-u;+3u, , A, =0 (3.68)
Logarithmic decrement:
— T
u(t) = [~ug+3uyJcos(o,t) —u, 0S‘[<(D—n (3.69) U, Un N 5 TI%]
_ Nz B 1 18.35 14.35 1 0.245 3.91
End displacement: u(w—n) = [-ug+3u,J(=1)—u, = uy—4u, > 18.35 10.35 > 0286 456
3 18.35 6.35 3 0.354 5.63
- Step 3: 4 1835 | 2.35 4 0514 | 8.18
Initial conditions ... Average 5.57
* Important note: Comparison:
The change between case a) and case b) occurs at velocity re- 20
versals. In order to avoid the build-up of inaccuracies, the dis- ] _

. . s . ——Friction damping
placement at velocity reversal should be identified with 15 - Viscous damping |
adequate precision (iterate!) 10 A

* Visualization of the solution by means of the Excel file given on = /:\ A
the web page of the course (SD_FV_friction.xIsx) g 5 / /,-\
e /, A
» Characteristics of friction damping t_E_ 0 \//\\ﬁ"
- Linear decrease in amplitude by 4u, at each cycle £ -5 ‘ = :
- The period of the damped and of the undamped oscillator -10 \,/ '
is the same:
-15 \/
T — 2_TE _20 ---------------------------------------------------------------------------------------------
T, 0 1 2 3 4 5 6 7 8 9 10
Time (s)
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4 Response to Harmonic Excitation

u(t)

An harmonic excitation can be described either by means of a
sine function (Equation 4.1) or by means of a cosine function
(Equation 4.2):

mu +cu+ku = F_sin(wt) 4.1)
mu +cu+ku = F_cos(mt) (4.2)

Here we consider Equation (4.2) which after transformation be-
comes:

ii+2¢0, 0+ o.u = f cos(ot) (4.3)
where: o : Circular frequency of the SDoF system

o: Circular frequency of the excitation

f =F,/m = (F /k) - o2

4 Response to Harmonic Excitation Page 4-1
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Linear inhomogeneous differential equation

e Particular solution: u,

i)+ 20w, + ohu = () (4.4)
* Solution of the homogeneous ODE: u,

i, +2Co, i, + oou, = 0 (4.5)
* Complete solution: u = u, + Cuy

i +2Cm t+oou = f,cos(ot) (4.6)

¢ Initial conditions

u(0) = u, , u(0) = v, (4.7)
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4.1 Undamped harmonic vibrations « Complete solution of the ODE:

f
ii+ou = f,cos(wt) (4.8) u = Ajcos(@,1) + A,sin(,1) + ———cos(wt) (4.16)
W, -
» Ansatz for particular solution !
By means of the initial conditions given in Equation (4.7), the

u, = A, cos(ot) (4.9) constants A, and A, can be calculated as follows:
L 2 f \
u, A " cos(mt) (4.10) A= vy — 0 . A, - (D_o (4.17)
By substituting (4.9) and (4.10) in (4.8): 0, ~® "
—Aoo)zcos((n)t) + Aocorzlcos((nt) = f_ cos(wt) (4.11) * Denominations:
- Homogeneous part of the solution: “transient”
2, 2
Ao T o) = £, (4.12) - Particular part of the solution: “steady-state”
f, F, 1 * Visualization of the solution by means of the Excel file given on
A, = 03121 ~ 0)2 - k- _1 —(o/ (’On)z (4.13) the web page of the course (SD_HE_cosine_viscous.xlsx)
_ fo
YU = zcos(o)t) (4.14) » Harmonic vibration with sine excitation
0, -0
f
» Ansatz for the solution of the homogeneous ODE u = A cos(myt) +A,sin(w,t) + == sin(ot)

(see section on free vibrations) 0, -0
By means of the initial conditions given in Equation (3.7), the constants

= + 1 -
Up Blcos(cont) stm((ont) (4.15) A1 and A2 can be calculated as follows:

Vo 10((1)/(0”)

Ay = g , Ay = =——F—
2 ) 2 2

n 0,—0
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4.1.1 Interpretation as a beat

ii+oou = f cos(ot) with  u(0) = i(0) = 0 (4.18)
The solution is:
fO

u(t) = T [cos(mt) — cos(m,t)] (4.19)

0, -0

and using the trigonometric identity

cos(a) — cos(B) = -2 sin(a; Bt) sin(m;r Bt) (4.20)
one gets the equation
21 EVAORE NN O R O
u(t) = 2 : sm( 7 t) sm( 7 t) (4.21)
n

that describes a beat with:

f+f

Fundamental vibration: f; = 5 (4.22)
f—f

Envelope: fy = 5 (4.23)

A beat is always present, but is only evident when the natural fre-
quency of the SDoF system and the excitation frequency are
close (see figures on the next page)

4 Response to Harmonic Excitation Page4-5
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» Case 1:

500

Natural frequency SDoF 0.2 Hz, excitation frequency 0.4 Hz

400
300
200
100

—Total response ==-Envelope
t"

/\/\/\

/ /
’ \ 7

0

-100

Displacement

-200
-300
-400
-500

VV\/V

e Case 2:

80

2 4 6 8 10 12 14 16 18 20
Time [s]

Natural frequency SDoF 2.0 Hz, excitation frequency 2.2 Hz

Displacement

-80

—Total response

==-Envelope

Time [s]
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. TZ?onsition tof=f, 4.1.2 Resonant excitation (o= o)
— i+ o = f,c08(w, ) (4.24)
g ;ZE nll”m”””””” H”””””hv M““m“““l““)l“”““““ fi - 20500 - Ar:atz :ttsr::(z:zt)lcular solution .
o — iy = Agsin(@,t) + A o teos(w,t) (4.26)
o o
[ T L A i) AR © A - o
o ) 2
,,,,, T _—_— " o -
e LI s
[ B R S —
el resonance! , = By cos(@,0) + Bysin(0,1) (4.32)

Time [s]

4 Response to Harmonic Excitation Page4-7 4 Response to Harmonic Excitation Page 4-8



Course “Fundamentals of Structural Dynamics” An-Najah 2013

» Complete solution of the ODE:

f
u= Alcos(mnt)+Azsin(wnt)+2£ tsin(,t) (4.33)

n

By means of the initial conditions given in Equation (4.7), the
constants A, and A, can be calculated as follows:

A, =, , A, = =2 (4.34)

* Special case u, = v, = 0
(The homogeneous part of the solution falls away)

f
u = 20(; tsin(,t) (4.35)

n

Is a sinusoidal vibration with amplitude:
A= —t (4.36)

- The amplitude grows linearly with time (see last picture of
interpretation “beat”);

- We have A — « when t — «, i.e. after infinite time the am-
plitude of the vibration is infinite as well.

* Visualization of the solution by means of the Excel file given on
the web page of the course (SD_HE_cosine_viscous.xlsx)

4 Response to Harmonic Excitation Page4-9
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4.2 Damped harmonic vibration

i +2Cm t+oou = f,cos(ot) (4.37)

« Ansatz for particular solution

u, = Ajcos(mt) + A,sin(wt) (4.38)
up = —A;msin(wt) + A wcos(mt) (4.39)
i) = ~Ay0”cos(0t) — A0 sin(ot) (4.40)

By substitution Equations (4.38) to (4.40) in (4.37):

(0 — ©)A; +2L0,0A,]cos(0) + [- 2{0,0A; + (0) — 0 )A,]sin(ot) = f,cos(ot)

(4.41)

Equation (4.41) shall be true for all times t and for all
constants A, and A, therefore Equations (4.42) and (4.43)
can be written as follows:

(mif(oz)A3+2Cmn0)A4 =f (4.42)

(6]
— 200, 0A; + (0. —0)A, = 0 (4.43)

The solution of the system [(4.42), (4.43)] allows the
calculations of the constants A, and A, as:

o - 2o,
A; =1 5 , Ay = f -
° 2 2.2 2 ° 2 2.2 2
(0, —0") +(2lo,) (0,—0) +2lw,0)
(4.44)
4 Response to Harmonic Excitation Page4-10
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» Ansatz for the solution of the homogeneous ODE
(see Section 3.2 on damped free vibrations)

u, = e_Cmnt(Blcos((odt)+stin(0)dt)) (4.45)
with:
0y = 0, I—CZ “damped circular frequency” (4.46)

» Complete solution of the ODE:
eicw“t(A1 cos(myt) + A,sin(myt)) + Aycos(mt) + A, sin(mt)
(4.47)

u =

By means of the initial conditions of Equation (4.7), the con-
stants A, and A, can be calculated. The calculation is labo-
rious and should be best carried out with a mathematics pro-
gram (e.g. Maple).

* Denominations:
- Homogeneous part of the solution: “transient”
- Particular part of the solution: “steady-state”

* Visualization of the solution by means of the Excel file given on
the web page of the course (SD_HE_cosine_viscous.xlsx)
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- Example 1: f, = 1Hz, f = 0.2Hz, { = 5%, f, = 1000, ug = 0, vg = fo/o,

60

-=-Steady-state response

40 —Total response

Displacement
o

0 2 4 6 8 10 12 14 16 18 20
Time [s]

+ Example 2: Like 1 but with F(t) = Fsin(wt) instead of F cos(wt)

50
= = -Steady-state response
40 F

=—Total response

30 f
20
10
0
-10
-20
30 F
-40 F
-50

/

\ / \ / \ /
\Y% A\ \/

Displacement

0 2 4 6 8 10 12 14 16 18 20
Time [s]
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4.2.1 Resonant excitation (o = o)

By substituting = w, in Equation (4.44) the constants A, and
A, becomes:

f
Ay=0,A, = —2 (4.48)
2Co,
i.e. if damping is present, the resonant excitation is not a special
case any more, and the complete solution of the differential

equation is:

7C(Dnt . f() .
u=-ce (A cos(myt) + A,sin(myt)) + 2sm((ont) (4.49)
28w

n

* Special case u, = v, = 0

Ar=0 , A,=- fo = —2C0f)°w (4.50)
20w 1-C n®d
f, ( ) sin(@yt) —Lo,t
u = 5| sin(@,t) - ————¢ (4.51)
28w, J1-¢

- After a certain time, the homogeneous part of the solution
subsides and what remains is a sinusoidal oscillation of the

amplitude:
f
A=—= (4.52)
2Co,

4 Response to Harmonic Excitation Page4-13
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- The amplitude is limited, i.e. the maximum displacement of
the SDoF system is:
f F u

0~ o _ 4.53
Ilmax 2§0)I21 2Ck ZC ( )

where u, = F_/k is the static displacement.

- For small damping ratios ({<0.2) o = ®, and A1 - Cz =~ 1
hence Equations (4.51) becomes:

(8]

u = 5(1 —e’c“’“t)sin(mnt) =u,,. (1 —e’c‘”"t)sin(mnt) (4.54)

2Co,

It is a sinusoidal vibration with the amplitude:

A=u (1-e ™ (4.55)

max(l
and the magnitude of the amplitude at each maxima j is

= (e Yysin(o,t) (4.56)

max

Maxima occur when sin(o,t) = -1, d.h. when

T
t = (4j71)-f,j = 1.0 (4.57)
. T . T
u; “Cw,(4j-1)- = -C4j-1)-3
u= R Yo e 2 (4.58)
umax
4 Response to Harmonic Excitation Page4-14
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» Dynamic amplification

50

40 |

umax / ust

20

or \
———

0 0.05 0.1 0.15 0.2
Damping ratio { [-]

» Magnitude of the amplitude after each cycle: f(upay)

"/t; 0.01

Cycle

Course “Fundamentals of Structural Dynamics” An-Najah 2013
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* Magnitude of the amplitude after each cycle: f(ug)

50
el £=10.01
® /
2 30
"3:.
(2]
< 20 /
0.05
10 4
0.10
0 ] ] ]
10 15 20 25 30 35 40 450.2050

Cycle
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5 Transfer Functions

5.1 Force excitation

The steady-state displacement of a system due to harmonic ex-
citation is (see Section 4.2 on harmonic excitation):

u, = a;cos(mt) + a,sin(wt) (5.1)
with
2 2
- 2
a = f Do O ay, = f SO0 (5.2)

(02— o+ (2lo,0) (02— oY + (2Lo,0)

By means of the trigonometric identity

acos(a) +bsin(o) = Jat+b°- cos(ot—0) where tand = b (5.3)

a

Equation (5.1) can be transformed as follows:

u, = U0 COS (Ot — O) (5.4)

It is a cosine vibration with the maximum dynamic amplitude

umax )

[ 2 2
Unax =~ A3 +a2 (55)

and the phase angle ¢ obtained from:

tan¢ = ? (5.6)

1

5 Transfer Functions Page 5-1
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The maximum dynamic amplitude u .. given by Equation (5.5)
can be transformed to:

[f w0 -0 Jsz(f 20w, jz
N @ m o) e, Vel - o)+ (2le,0)]

=1
I

(5.7)
2_ o2y 0, 0)
umax = fO 2 - 2 (5'8)
(o)~ 0") +(2{0,0)’]
Upax — fo 21 (59)
A/(ooflf(nz) +(2§c0n0))2
f
u_ = = ! (5.10)

=5
O 11 - (/0,1 + [26(0/0,)1

Introducing the maximum static amplitude u, = F,/k = f,/o, the
dynamic amplification factor v(w) can be defined as:

umax 1
V(o) = % = (5.11)

/e 24/ 0,)T

The maximum amplification factor v(w) occurs when its deriva-
tive, given by Equation (5.12), is equal to zero.
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20 2 2 2
dv _ 200, [0 -0, (1 -20)] (5.12)
do 4.(3/2) '

[0 —2(1-20)0 0. + o]

4V _ o when: 0 = 0, 0 = +o, 4120 (5.13)

do

The maximum amplification factor v(w) occurs when:

o= ol —2C2 for C<Lz0.7l (5.14)
J2
and we have:
. _ 1
0=0,: V = 2 (5.15)

_ / 2, _ 1
0 = o, I*ZC . V—m (516)

From Equation (5.6), the phase angle ¢ is:

tang = PAQONO _ 20(0/o,) (5.17)

03121— o 1- (o)/o)n)2

The phase angle has the following interesting property:

do _ 2L[1+(0/0,)’] (5.18)
dlw/o,) _2((0/‘%)2 + (m/mn)4 + 4§2(03/0)n)2
at /o, = 1 we have: gq()T/(Dn) = é (=é : lnﬁ when ¢ in Ejse?s)a)

Course “Fundamentals of Structural Dynamics” An-Najah 2013
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5.1.1 Comments on the amplification factor V

V(o) = L (5.20)

J1 = (@70, + 2¢(0/0,)1

* o/0, « 1: Slow variation of the excitation ({ not important)

* V(o) =1 therefore: u , =u,

* 0 = 0: Motion and excitation force are in phase

* /o, » 1: Quick variation of the excitation ({ not important)
0,2
v-(3)

O,

2
L S T (E) = FO/(mo)z): Mass controls the behaviour

* ¢ = 180: Motion and excitation force are opposite

* (0/0,)=1: ({ very important)

L
28

* U, ~U,/(20) = F /(cw,): Damping controls the behaviour

* V(o) =

* 0 =90: zero displacement when excitation force is maximum
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» Amplification factor

Amplification factor V(w)

* Phase angle

Phase Angle ¢

-
o

o =

180

©
o

0.00 ,\

I\

[ \c=o.05

N O A~ 00 O N 00 ©

0.20
0.50
’\\
) l :
0.5 1 1.5 2
oo,

olo,

« Example:

An excitation produces the static displacement

F _cos(mt

u, = 0—() (5.21)
k

and its maximum is:

FO
U = (5.22)
The steady-state dynamic response of the system is:
Uy = U, cos(ot—0) (5.23)
therefore:
U u,
— = cos(mt) , — = Vcos(ot—0) (5.24)
uO uO

In the next plots the time histories of u,/u, and u /u, are
represented and compared.

The phase angle ¢ is always positive and because of the mi-
nus sign in Equation (5.24) it shows how much the response
to the excitation lags behind.

5 Transfer Functions

Page 5-5
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Frequency of SDoF System f, = 1Hz (w, = 6.28rad/s), Damping { = 0.1

/0, =09
/ o = 09628
_ﬁf_f. = 5.65 rad/s
V = 3.82
0 = 43.45°
-3 | ----Excitation = 0.76 rad
:g - —Stfady-state rfsponse | | | A= 9 _ %
000 025 050 075 100 125 150 175 200 @ %
Time [s] = 0145
5 ! o/, = 1.0
4 F
3 F
2 F At
o 1 -\ ==l
2 o0 e — e
= e v
2 F
-3 | ----Excitation
-4 = Steady-state response
-5 " " A
0.00 025 050 0.75 1.00 1.25
Time [s]

1-6.28
91 rad/s

-
s

ul/u,
AP WON_~O=_2DNDNOLAO
\ 1
1
1
/
’
/|
’
’
1
il
1]
(]
1
\
L)
\
/
AY
( ‘
\ ]
1
I’
> >
/ ~
’
’
/
1
[
1]
1
1}
\
L \
<
A
AY
\
\
\
3 \
1
)
1
I
1
S
)
B=a < e
i \ I
N; o N —
w
wo\ 4
o
a8 N
o, o

= ----Excitation

Steady-state response At

0.00 025 050 0.75 1.00 125 150 1.75 2.00
Time [s]
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5.1.2 Steady-state displacement quantities

 Displacement: Corresponds to Equation (5.4)

u
= —
F_Lo/k V(m)cos(ot—¢) (5.25)

 Velocity: Obtained by derivating Equation (5.25)

p _ .

F/K = —V(o)osin(ot—¢) (5.26)
1‘1 = J— _O) 1 J—

(_LFO/k)c)n V(m)mnsm(mt 0) (5.27)

Fo/—pﬂn = -V (0)sin(ot—¢) with V. (®) = (D%V(m) (5.28)

* Acceleration: Obtained by derivating Equation (5.26)

.
= — 2 —
F——E—O/k V(o)m cos(mt— ) (5.29)
i =
—p2 = —V(©0)=;cos(ot - §) (5.30)
(F,/k o, o,
i e
L = _v_(0)cos(ot—0) with V (0) = =V(0) (5.31)
Fo/m 0)2
n
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» Amplification factors 5.1.3 Derivating properties of SDoF systems from
13 Resonant harmonic vibrations
g s displacement - Half-power bandwidth
= 7
g o
i : 10 V(Resonance)
:.*3 4 ® = mnA/1—2C2 _ ’
g : v 1 Sf' : ! ‘ V(Resonance)
= — o
; 20T . i 2
0 0.5 ml:l)n 1.5 2 5 5 / \
" 0.00 Resonant g4 / \
—_ 0.01 H = 3
: : velocity g 2 / \
§ . ¢=0.05 1 C=0-(£_/ _ - 2:\
s 0 =0, 0 . \
g : | 0 0.5 @a’y Op 15 2
g 2 V = Z_C_, o/,
:, Condition:
" R V(o) - V(o/o, = J1-28%) 11 (5.32)
: ssonant 52 AT |
S acceleration
= 7 ! L1 (5.33)
3 2 n_ '
N o, J[l—(m/wn)z] O R S
2, 0= —
8 2 4 2
= 1-2 OV H1o2tH( L _8c%(1-¢% =
: J1-2¢ (w) 2(1-2¢ )(mn) +1-88%(1-6% = 0 (5.34)
1 V = —1 2
o 20JT-C (wﬂ) =120 +2041 -8 (5.35)

n
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For small damping, the terms featuring Cz can be neglected:

~J1£20=1=%( (5.36)

Lle

This yield the solution for the half-power bandwidth:

20 = a (5.37)

* Remarks on the frequency response curve

» The natural frequency of the system can be derived from the res-
onant response. However, it is sometimes problematic to build the
whole frequency response curve because at resonance the sys-
tem could be damaged. For this reason it is often better to deter-
mine the properties of a system based on vibration decay tests
(see section on free vibration)

+ The natural frequency o, can be estimated by varying the Excita-
tion until a 90° phase shift in the response occurs.
» Damping can be calculated by means of Equation (5.15) as:

Yo

u
Il
=

um ax

However, it is sometimes difficult to determine the static deflection
u,, therefore, the definition of half-power bandwidth is used to
estimate the damping.

* Damping can be determined from the slope of the phase angle
curve using Equation (5.19).
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5.2 Force transmission (vibration isolation)

F(t) = Fycos(mt)

The mass-spring-damper system,
shown here on the right, is excited
by the harmonic force

u(t)

F(t) = F cos(mt)

What is the reaction force F(t),
which is introduced in the founda-
tion?

The reaction force F(t) results from the sum of the spring force
F, and the damper’s force F_

Fp(t) = F (1) +F_(t) = ku(t)+ cu(t) (5.38)
The steady-state deformation of the system due to harmonic ex-

citation F(t) is according to Equation (5.4):

F
u, = U, cos(ot—0) Withu, . = u V(o) = —k9V(m) (5.39)

By substituting Equation (5.39) and its derivative into Equation
(5.38) we obtain:

F
Fr(t) = fV(m)[kcos(o)t—(p)—cmsin(wt—d))] (5.40)
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with the trigonometric identity from Equation (5.3):

F _
Fo(t) = fV(o))[A/k2+czwzcos(a)t—(]))] (5.41)

and by substituting the identity ¢ = (2{k)/ o, :

Fo(t) = F V(o) 1+(2§0—(;)—)2cos((ot—q_)) (5.42)

n

the maximum reaction force becomes:

F
—T};ma" = TR(®) (5.43)

[}

where the quantity TR(w) is called Transmissibility and it is
equal to:

TR(w) = V(o) |1 +(2z;wﬂ)2 (5.44)

1+[28(0/o,)]

[1— (0/0,)] + [2{(0/o,)]

Special case:
2
TR(2 = 1) _ 1Al (5.45)
0, 28
5 Transfer Functions Page5-13
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» Representation of the transmissibility TR

-
o

0.00
9
. 0.01
« - ¢ =0.05
2 6
2 5
°
E 4 2
S 3
= //0-%\0.20
Ul K
0 l..“/.il ....i....;.ﬁ—ﬁ

- When o/0, > 2 then TR < 1: Vibration isolation

- When o/0, > .2 damping has a stiffening effect

- High tuning (sub-critical excitation)

- Low tuning (super-critical excitation):
Pay attention to the starting phase!
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5.3 Base excitation (vibration isolation)

5.3.1 Displacement excitation

u(t)

Ye(® y(©)

The mass-spring-damper system, shown here above is excited
by the harmonic vertical ground displacement

yg(t) = ygocos(cot) (5.46)
What is the absolute vertical displacement u(t) of the system?
The differential equation of the system is:

mi+c(i-y)+k(u—y) =0 (5.47)
after rearrangement:

mii+cu+ku = ky +cy (5.48)

5 Transfer Functions Page5-15
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The right hand side of the ODE (5.48) can be interpreted as an
external excitation force F(t) = ky +cy:

F(t)

ky 4,08 (0t) — ey, 0sin(ot) (5.49)

kygo[cos((ot) - 2C0_(;)— sin(wt)}

n

= kyg, 1+ (2@0)2)2cos(0)t+ 0)

The external excitation force F(t) is harmonic with amplitude:

F, = kyg, |1 +(zz;w-‘*ln)2 (5.50)

According to Equations (5.10) and (5.11) the maximum displace-
ment of the system due to such a force is equal to:

F, ] 2
Umax — ?V((’)) = Ygo 1+(2C0)2n) V(w) (551)
By substituting Equation (5.44) we obtain:

u
=2 = TR(m) (5.52)
g0

where again TR(mw) is the transmissibility given by Equation
(5.44).
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5.3.2 Acceleration excitation

u(ty Pay attention:

This base excitation, like
the excitation discussed
in the previous Section
5.3.1, is an harmonic ex-
citation and not an arbi-
c T y(t) trary excitation like e.g.

o (1
Y an earthquake (see Sec-
/\/\/ ! tion 7).

The mass-spring-damper system, shown above here, is excited
by the harmonic vertical ground acceleration.

Yo(t) = ¥goc0s(mt) (5.53)
What is the absolute vertical acceleration ti(t) of the system?
The differential equation of the system is:

mii+c(u—y)+k(u—y) =0 (5.54)

after rearrangement:

mii + c(i—y) +k(u—y)-my = —my (5.55)
m(i-y)+c(-y)+k(u-y) = -my (5.56)
miig + el +kug = -my, (5.57)
Mg+ Clyo + KUy = —my,,cos(ot) (5.58)
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The steady-state relative deformation u_, of the system due to
the harmonic ground acceleration g is given by Equation (5.1):

U, = a;cos(mt) +a,sin(mt) (5.59)

rel

with the constants a;, and a, according to Equation (5.2), and
with:

F -my
- 0 - _Jgo_
-l (5.60)
By double derivation of Equation (5.59), the relative acceleration
i, can be calculated as:

U = —almzcos(mt)—azmzsin(mt) (5.61)

The desired absolute acceleration is:
=l +¥, = - almzcos(mt) — azm2 sin(ot) + ¥4, cos(ot) (5.62)

By substituting the constants a,, a, and f_ given by Equations
(5.2) and (5.60), and after a long but simple rearrangement, the
equations for the maximum absolute vertical acceleration of the
system is obtained as:

u
—2% = TR() (5.63)
g0

where again TR(mw) is the transmissibility given by Equation
(5.44).
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« Additional derivation:

The maximum relative displacement given by Equation (5.58)
can be easily determined by means of Equations (5.10), (5.11)
and (5.60) as:

) P

Urel, max = —3V(©) = |l‘;—"l\/(w) (5.64)
0)1'1 ('On

u

LM — V() (5.65)

(5 4o/ )

Course “Fundamentals of Structural Dynamics” An-Najah 2013
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5.3.3 Example transmissibility by base excitation

u(t)

Vertical base excitation:

V. (t) = Ajcos(myt)
e o A0

W\

* Natural frequency SDoF system: f = 0.5Hz

c T y()
[

+ Excitation frequency: f, = 2.0Hz

« Excitation amplitude: A, = 10m/s?

Sought is the maximum absolute acceleration i . of the SDoF
system for { = 2% and for { = 20%.

* The steady-state maximum absolute acceleration is:

© {=2%,0/0, =4 TR 0.68m/s’

0.068 and i,

« {=20%,0,/0, =4 TR =0125andi_, = 125m/s’

* Is the steady-state maximum absolute acceleration really the
maximum absolute acceleration or at start even larger abso-
lute accelerations may result?

 Assumptions: starting time t, = 80s, sinusoidal start function for
excitation frequency and excitation amplitude.
* Numerical computation using Newmark’s Method (see Section 7)
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+ Case 1: Initial situation with { = 2% + Case 2: Increase of the damping rate from £ = 2% to { = 20%
T T T T T T T T T
~ 2 i N 2
T 7 T
& ] &
o ] 2
st . 51+ J
s i s
= f=f,=0.5Hz i s f=f,=0.5H
Ll L 4
ol (1] e R T N S S A T
0 10/ 20 3 40 50 60 70 8 90 100 0 10/ 20 3 40 50 60 70 8 90 100
T T
o 10 o O
e e
2 I 2 T
ST gt
§ sk . § sk -
c B c r
S s
s r s I
g O L 1 1 1 1 1 1 1 1 1 ] 9 0 L 1 1 1 1 1 1 1 1 1 ]
w0 10| 20 3 40 50 60 70 8 90 100 w0 10/ 20 3 40 50 60 70 8 90 100

[m/s?]

£SO

s

v HHHNHUH||\fWUHWH{MHHWMWWHWHM’HWHMMMHHHMMWH}HW{@ V ””HHIlHIlI\1llHIHIIMIHHWHWMWWHMHWHWMWHNHMWHMMWE
T LA T

Time [s] Time [s]
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+ Case 3: Reduction of starting time from t; = 80s to t; = 20s (£ = 2%) » Case 4: Change the start function for the amplitude (£ = 2%)
T | T T T T T T T T T T T T T T | T
N 21— 1 N 21— 1
L r 1 T T r 1 7
g [ ! i s [ ! ]
= ! 4 s+ ! -
§1F l 7 s l .
s L ! i s [ . ]
S A f=f,=0.5Kz ] S F =f,=0.5Hz ! ]
L 0 ! 4 w b I i
0] 10 20 30 40 50 60 70 80 _ 90 _ 100 7

RO B L L L B DL DAL R L B -~

e : | e

2 r | 3

E [ ! ] £

: 1
- I -—
I -
O 0 R —
L

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
w0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

! T T IR
R e R
SR R 2 -
[
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* Notes
The excitation function in the starting phase has the form:
F(t) = A(t)cos((1) - 1) (5.66)

The excitation angular frequency varies with time, and is:
o) = Y-y (5.67)
dt
* Linear variation of the excitation circular frequency

Q(t):&-t:

- i3
2, o(t) = @ ¢ (0<t<t,) (5.68)

a

» Parabolic variation of the excitation circular frequency

a

_ Y 2. — . (LY
Q(t) = 3t§ t7 o(t) = 0, (t) (0<t<t,) (5.69)

+ Sinusoidal variation of the excitation circular frequency

Tt 2t 2t

a

Q(t) = —zwotacos(’—‘-i): o(t) = o, - sin(ﬁ.i) (0<t<t,)

(5.70)

* Double-sinusoidal variation of the excitation circular frequency

sin(ﬂ: . tl)ta
Q) = 20/ - 1ot = wo[l—cos(mtiﬂ (5.71)

2 Tt a

* Visualization of the solution by means of the Excel file given on
the web page of the course (SD_HE_Starting_Phase.xIsx)

Course “Fundamentals of Structural Dynamics”

An-Najah 2013
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5.4 Summary Transfer Functions

V(o) = : (5.72)
2 2
J[l—(m/mn) I +128(0/0,)]
2
1+[20(w/®
TR(w) = [ fi )] 5 (5.73)
[1-(0/0)"] +[28(e/®,)]
. . umax
» Force excitation: o V(m)
(6]
.. FTmax
» Force transmission: F_ = TR(w)
(6]
B . . umax
* Displacement excitation: = TR(m)
ng
 Acceleration excitation — = TR(w)
Ygo
u’rel,max _ V((!))
.. 2
(Fgo” @p)
 For further cases check the literature.
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6 Forced Vibrations

6.1 Periodic excitation

4.0
2 - - —tatsineoxtton

@
o

N w
(3} o
—
-
—
-

Force F(t) [kN]
= b ¢
[3,} o

\
fm—1
\
f—"

0.5

0.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

An excitation is periodic if:
F(t+nT,) = F(t) for n= -, ...,~1,0,1,..,0 (6.1)

The function F(t) can be represented as a sum of several har-
monic functions in the form of a Fourier series, namely:

oo

F(t) — a0+ Z [anCOS(n(l)Ot)+bnSin(nO)0t)] (62)

n=1
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with the fundamental frequency

2
W, = ﬁ‘ (6.3)

Taking into account the orthogonality relations:

T, o _ {0 for n#j

'[0 sin(nm,t) sin(jo,t)dt = {To/2 for n— | (6.4)
T, . 0 for n#j

-[0 cos(nmyt) cos(jo,t)dt = {TO/Z for 1= (6.5)
T,

'[0 cos (no,t) sin(jmyt)dt = 0 (6.6)

the Fourier coefficients a, can be computed by multiplying Equation
(6.2) by cos(jwgt) first, and then integrating it over the period T,,.

] j = O
TO TO
I F(t)cos(jo,t)dt :I a,cos (jo,t)dt (67)
0 0
hnd TU . TU . .
+ nZ] Do a, cos(nmyt)cos(jo,t)dt + _[0 b, sin(nwg,t)cos(j wot)dt}
jTOF(t)dt = jT"aOdt = a,T, (6.8)
0 0
L ko 6.9
aO—T—O-jO (Hdt (6.9)
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L] j = n
T0 TO
[ "F(t)ycos(jwgtydt = [ “apcos(j,t)dt (6.10)
0 0

w T, ) T, )
+HZI Do ancos(n(uot)cos(J(:)Ot)dtJr'f0 bnsm(n(not)cos(J(x)Ot)dtj

.[TOF(t)cos(nu)Ot)dt = an-g—o (611)
2 To

a = —.j F(t) cos (n,t)dt (6.12)
T0 0

Similarly, the Fourier coefficients b, can be computed by first
multiplying Equation (6.2) by sin(jo,t) and then integrating it
over the period T,,.

n

2 o
b = ——-J’ F(t)sin(no,t)dt (6.13)
T0 0

* Notes

- a,, is the mean value of the function F(t)

- The integrals can also be calculated over the interval
[-T,/2,T,/2]

- For j = 0 no b-coefficient exists
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6.1.1 Steady state response due to periodic excitation

mi +cu+ku = F(t) (6.14)

ii+2Cw,t+ou = 1% (6.15)

F(t) = a+ i [a,cos(nm,t) + b, sin(nmyt)] (6.16)
n=1

- Static Part (a,))

a,
uy(t) = f (6.17)
» Harmonic part “cosine” (see harmonic excitation)
Cosine a, 2{B,sin(no,t) + (1 - Bi) cos(nwgt) nw,
Un (t):E 2.2 2 ’Bn:(’)
(I_Bn) +(2CBn) n
(6.18)
* Harmonic part “sine” (similar as “cosine”)
Sine b, (1—B2)sin(nogt) —2¢B, cos(nwyt) nw,
tn ():f. 2.2 2 ’B“:a)
(1-By) +(28B,) n
(6.19)

» The steady-state response u(t) of a damped SDoF system un-
der the periodic excitation force F(t) is equal to the sum of the
terms of the Fourier series.

ut) = uo(t) N Z ugosine(t) N z uiine(t) (6.20)

n=1 n=1
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6.1.2 Half-sine

A series of half-sine functions is a good model for the force that
is generated by a person jumping.

4.0

T ===Half-sine excitation
0

A A
\

3.5

w
=)

N
3

Force F(t) [kN]
o 5

-
o

i
3

e
=)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

Asin(lt) for OSt<tp
F(t) = b (6.21)

0 for tpSt<T0

The Fourier coefficients can be calculated at the best using a
mathematics program:

t t
ay = 2 psin(lt)dt - 2At with ©=-L (622
T, o tp T T,
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2
2A (P . (mt 4Atcos(nmt
a, = T_.[ sm(— cos(nm,t)dt = (2 2) (6.23)
0 %0 t n(1 —4n"7")

t .
b = 2—A-Ipsin(ﬂ) sin(na,t)dt = 4A‘cs1n(n7t’c)(2:0§(n1t‘t)
Ty 7o P n(l-4n"1)
(6.24)

The approximation of the half-sine model for T, = 0.5s and
t, = 0.16s by means of 6 Fourier terms is as follows:

4.0

L L
- > == Static term (n=0)

TO First harmonic
il ic (n=1)
A N\

harmonic (n=2)

Third harmonic (n=3)

«==Total (6 harmonics)

20 |

1.0 F

N\ wew/a\ve

\

Force F(t) [kN]

1.0 |

-2.0

0 0.1 02 03 04 05 06 07 08 09 1
Time (s)

* Note

The static term a, = 2At/n = G corresponds to the weight of
the person jumping.
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6.1.3 Example: “Jumping on a reinforced concrete beam”

* Beam

F® * Young’s Modulus:

= 1 E = 23500MPa
I

L J * Density:
p = 20.6kN/m>

900 » Bending stiffness:
El = 124741kNm?

gL l{ ] « Damping rate
= ¢ = 0017
Stirrup D8, s=200 ° Modal mass
., & ¢ M, = 0.5M

480

tot

* Modal stiffness
400 \ 6 D22
K - ™ EI
_ n 2 13
Tendon 22 D7, P,y = 705 kN

* Excitation (similar to page 186 of [Bac+97])

4.0

e | ¢ JUMping frequency:
f, = 2Hz

* Period: T, = 0.5s

35 f

w
=}

N
@

e Contact time:
t, = 0.16s

Force F(t) [kN]
a B

* Person’s weight:

-
=

G = 0.70kN
0.5
0.0 * Amplitude:
o o1 02 03 04 05 06 07 08 09 1 A = 3.44kN
Time (s) :
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* Maximum deflections

Static: ug = I%

Dynamic: u = max(u(t)) with u(t) from Equation (6.20)

max

Ratio: V - mx
Ut
* Investigated cases
Length Frequency f, Umax \
[m] [Hz] [m] [-]
26.80 1 0.003 1.37
19.00 2 0.044 55.94
15.50 3 0.002 3.62
13.42 4 0.012 41.61
12.01 5 0.001 4.20
10.96 6 0.004 25.02
* Notes

- When the excitation frequency f, is twice as large as the
natural frequency f, of the beam, the magnification factor

V is small.

- Taking into account the higher harmonics can be impor-
tant!
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» Casel: fy =2Hz, f, = 1Hz

0.0035

0.0030
N\

0.0025 [ \

AR

E 0.0020 / \ / = Static term (n=0) \
- ——First harmonic (n=1)
c . L wm=Second harmonic (n=2)
g 00015 g BN N7
8 0.0010 «==Total (6 harmonics)
S 0.0005 /TN /N
G 0.0000 ¢ — V/‘ — V )
-0.0005 // \ // .
\./ \./
-0.0010
-0.0015 s
0 014 02 03 04 05 06 07 08 0.9 1

Tim.e (s)

» Case 2: fy = 2Hz, f,, = 2Hz

0.0500
0.0400
0.0300

0.0200
0.0100 F / \

[\

0.0000 [ — -
-0.0100

Displacement [m]

-0.0200

——sStatic term (n=0)

wm=First harmonic (n=1)

-0.0300 I'/
-0.0400

\ / ~==Second harmonic (n=2)
Third harmonic (n=3)

emm=Total (6 harmonics)

-0.0500
0 01 02 03

04 05 06 07 08

Time (s)

0.9 1
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» Case 3: fy = 2Hz, f, = 3Hz

0.0020

0.0015

e=Static term (n=0)

e==First harmonic (n=1)

0.0010

harmonic (n=2)
Third harmonic (n=3)

e==Total (6 harmonics)

0.0005

J/

& /

0.0000

\
\ //’\\\
2\

2 )

Displacement [m]

NS/

-0.0005 \
\_

-0.0010

AN

» Case 4: fy = 2Hz, f, = 4Hz

0.0150

o
~
o
©
=)
©
—

0.0100 |

0.0050 |

e Static term (n=0)
e==First harmonic (n=1)
e==Second harmonic (n=2)

Third harmonic (n=3)

@==Total (6 harmonics)

0.0000

|
|

Displacement [m]

-0.0050 |

-0.0100

-0.0150 .

0 01 02 03 04 05 0.6
Time (s)

0.7 0.8
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e Case 5: fO = 2HZ, fn = 5Hz 6.2 Short excitation
0.0010 —
s 6.2.1 Step force
0.0008 N\ A e===Second harmonic (n=2)
0.0006 | / \ / \ e The differential equation of an undamped SDoF System loaded
E 0.0004 /\ with a force F, which is applied suddenly at the time t = 0 is:
€
g 00002 F \ q mii +ku = F (6.25)
& 0.0000 |- —
g_olom 7L ( There is a homogeneous and a particular solution
-0.0004 u, = A cos(m,t) +A,sin(o,t) (see free vibrations) (6.26)
-0.0006
-0.0008 . : : u, = Fo/k (6.27)
0 01 02 03 04 05 06 07 08 09 1 . i . i
Time (s) The overall solution u(t) = u, +u, is completely defined by the in-

itial conditions u(0) = u(0) = 0 and it is:
» Case 6: fy = 2Hz, f, = 6Hz

I

0.0050 —— ut) = f[l — cos(, )] (6.28)

0.0040 e e e ]

0.0030 A A N /—\ ot ¢ prmonice) * Notes
% 0.0020 | * The damped case can be solved in the exact same way. On the
& 0.0010 F web page of the course there is an Excel file to illustrate this exci-
& tation.
& 0.0000 F = - ] )
° * The maximum displacement of an undamped SDoF System under
5 00010 \ a step force is twice the static deflection uy,, = F,/k.

-0.0020

£.0030 * The deflection at the time t = - of a damped SDoF System under

- ¥ ¥ a step force is equal to the static deflection u,, = F,/k.

-0.0040

0.1 02 03 04 05 06 07 08 09 1
Time (s)

o
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« Step force: T,;=2s, F,/k=2, (=0

4.5

‘ ——Dynamic response

4
s | /\
3

)

25

2 [— —_— ] — — —

Displacement

1.5

\

1
" / \/
0 i
0 1 2

3 4 5 6 7 8 9 10
Time (s)
« Step force: T,,=2s, F /k=2, {=10%
4 ‘ ‘
——Dynamic response
35 — Excitation
A
E, 25
[
YRR _]L-__'_—/"—\
& 15 L
o
1 \/
0.5 ./
0 i I i
0 1 2 3 4 5 6 7 8 9 10
Time (s)
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6.2.2 Rectangular pulse force excitation

F(t) F@®) 2

u(t)
Fy

t

-

The differential equation of an undamped SDoF system under a
rectangular pulse force excitation is:

fortSt1

{mii+ku =F, ( )
6.29

mi+ku =0 for t>t,
Up to time t = t; the solution of the ODE corresponds to Equa-
tion (6.28). From time t = t; onwards, it is a free vibration with
the following initial conditions:

F
u(t)) = f[l — cos(,t,)] (6.30)
. Fo,
u(ty) = —k—consm(mntl) (6.31)
The free vibration is described by the following equation:
u, = A cos(m,(t—t,)) +A,cos(m,(t—t,)) (6.32)

and through the initial conditions (6.30) and (6.31), the constants
A, and A, can be determined.
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+ Short duration of excitation (t,/T, is small)

The series expansion of sine and cosine is:

2
cos(,t,) = cos(%[—ntl) = 1—% + ... (6.33)
3
sin(,t,) = sin(?—ttl) = ot +((Dn6tl) + (6.34)
and for small t,/T, the expressions simplifies to:
cos(w,t;) =1 , sin(m,t;) = o,t, (6.35)

By substituting Equation (6.35) in Equations (6.30) and (6.31) it
follows that:

F F
ity = Lodty = -2 (6.36)

u(t)) = 0 ) ?

Equation (6.36) shows, that a short excitation can be interpreted
as a free vibration with initial velocity

vy = I/m (6.37)

where I is the impulse generated by the force F, over the time t, .

* Rectangular pulse force excitation: I =Fyty
 Triangular pulse force excitation: I = 0.5Ft,
« Arbitrary short excitation: I = I)‘F(t)dt
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The equation of an undamped free vibration is:

2
u(t) = Acos(w,t—¢) with A = /u0+(%) and tang = 0)V?1
n n-0

(6.38)

therefore, the maximum amplitude of a short excitation is:
A= — (6.39)

* Notes

» The damped case can be solved in the exact same way. On the web
page of the course there is an Excel file to illustrate this excitation.

* Rectangular pulse force excitation: When t, > T /2, the maximum
response of the SDoF system is equal to two times the static de-
flection u, = F,/k.

* Rectangular pulse force excitation: When t, >T, /2, for some
t,/T, ratios (z.B.: 0.5, 1.5, ...) the maximum response of the SDoF
system can even be as large as 4F/k.

» Rectangular pulse force excitation: try yourself using the provided
Excel spreadsheet.

» Short excitation: The shape of the excitation has virtually no effect
on the maximum response of the SDoF system. Important is the
impulse.

 Short excitation: Equation (6.59) is exact only for t,/T — 0
and{ = 0 . For all other cases, it is only an approximation, which
overestimates the actual maximum deflection.
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* Rectangular pulse: T,=2s, t1=0.5s (t1/T,=0.25), F,/k=2, {=0% * Rectangular pulse: T,=2s, t1=2s (t4/T,=1.00), Fo/k=2, {=0%
4

4.5

——Dynamic response ——Dynamic response
3 | — Excitation 4f — Excitation

\ 35 f

JAWA \ ‘)
| Y\

15
1F

\/ \/ 0.5 f

Displacement

Displacement
—
T—
1
\\l
—
—

3 F 0
-4 . . : . -0.5 . :
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time (s) Time (s)
* Rectangular pulse: T,=2s, t{=1s (t4/T,=0.50), F/k=2, {=0% * Rectangular pulse: T,=2s, t4=3s (t4/T,=1.50), Fy/k=2, {=0%
3 o 3 T
) N IVANEVA N \ I\
o D /A0 A A W A W A
[ [=
. . A A AR A
g o " Tt 71T 38 o
© ©
o e 2
) ) \ oo\
. Vv Vv Vv \ . \
50 1 2 3 4 5 6 7 8 9 10 50 1 2 3 4 5 6 7 8 9 10
Time (s) Time (s)
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* Rectangular pulse: T,=2s, t1=3.5s (t1/T,=1.75), Fo/k=2, {=0%

——Dynamic response

5
4 — Excitation
, A

1

0 — — — —_— — \]

Displacement

-1

| \/

-3

-4

0 1 2 3 4 5 6 7 8 9 10
Time (s)
* Rectangular pulse: T,=2s, t{=4s (t4/T,=2.00), F/k=2, {=0%
45
4 F
35 F
3 F
25 f

——Dynamic response
— Excitation

2 —_—\ —— —

15
1

oV

-0.5

Displacement

Course “Fundamentals of Structural Dynamics” An-Najah 2013
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« Short rectangular pulse: T,=2s, t1=0.05s, F,/k=2, {=0%
2.5

——Dynamic response
— Excitation

1.5

Displacement

05 |

° A\
0 1 2 3 4 5 6 7 8 9 10
Time (s)

« Short rectangular pulse: T,,=2s, t1=0.05s, F/k=2, {=5%

2.5

—Dynamic response
— Excitation

1.5

Displacement

0.5
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6.2.3 Example “blast action”

» Test

* Modelling option 1

Within a simplified modelling approach, it is assumed that the
slab remains elastic during loading. Sought is the maximum de-
flection of the slab due to the explosion.

- Simplified system

1.55m 1.90 m 1.55m

Cross-Section

EI L P

i D |
m T 0.276 m‘
5.00 m 3.05m
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Mass: m = 3.05-0.276-2.45 = 2.06t/m
Concrete f'=414MPa , E_= 5000 ,/f' = 32172MPa
Stiffness 1, = (3050 -276°)/12 = 5344x10°mm"”

E ., = 171.9kNm?

E.I = 0.30E I, = 52184kNm? (due to cracking!)
- Action

AForce P,=1.90p
t, = 0.3ms iS by sure much
=192'000kN shorter than the period
T, = 64ms of the slab (see
Equation (6.51)). There-
fore, the excitation can be
considered as short.

P

tot, max

Impulse

} { >
0.02 ms t; (-0.3 ms) Time

- Equivalent modal SDoF system (see Section “Modelling”)

%

P

Q

Ansatz for the deformed shape:

vy = C1-sin(Bx)+C2 - cos(PBx)+ C3 - sinh(Bx) + C4 - cosh(Px)
(6.40)
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Boundary conditions:

y(0) =0, wy(@) =0,y(0)=0,y"(L) =0 (6.41)

By means of the mathematics program “Maple” Equation (6.40)
can be solved for the boundary conditions (6.41) and we get:

[sin(BL) + sinh(BL)] - [cos(Bx) — cosh(Bx)]

1.508 - v = sin(Px) — sinh(Bx) + ~—cos(BL) _ cosh(BL)

(6.42)
with
BL = 3.927 (6.43)

The shape of the function v is:

1
o | —
=06 | /
> 04 |
0.2 :/

0 [ 1 N 1 N 1 N N 1 N 1 N 1 N 1 N 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xIL []

And with the equations given in Section “Modelling”, the modal
properties of the equivalent SDoF system are determined:

m* = jzm-wz-dx = 0.439mL (6.44)
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L 2 El

kK* = EI-(y")” -dx) = 10437 - — 6.45

[, BT (v - dx) o3 (6.45)

pr= [T dx) = 0.888 - P 6.46

- J.lel.SSm(p.w. X) = 0888 Pioy (6.46)

For this example, the modal properties characterizing the equiv-
alent modal SDoF system are:

m* = 0.439-2.06-5 = 4.52t (6.47)
K = 104.37-5251384 — 43571kN/m (6.48)
P* = 0.888 - 192000 = 170496kN (6.49)
o = Jk*/m* = J43571/4.52 = 98.18rad/s (6.50)
T, = 21/0 = 0.064s (6.51)

The maximum elastic deformation of the SDoF system can be
calculated using the modal pulse as follows:

I* = 0.5-P"-t, = 0.5- 170496 - 0.3x10 > = 25.6kNs (6.52)
The initial velocity of the free vibration is:

vg = 2 = 256 _ 5 6ms (6.53)

The maximum elastic deflection is:

AL e = Vo/O = 5.66/98.18 = 0.058m (6.54)

m, e
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* Modelling option 2

Within a simplified modelling approach, it is assumed that the
slab remains elastic during loading. Sought is the maximum de-
flection of the slab due to the explosion.

- Simplified system

1.55m 1.90 m 1.55m

El rerrrrerr

|

- Equivalent modal SDoF system (see Section “Modelling”)

Q AN N D
Ansatz for the deformed shape:

- fsin(g%-)f) (6.55)

Boundary conditions:

W(0) =0, w(@L)=0,y"0)=0,y"(L)=0 (6.56)

The shape of the function v is:
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- 0
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-0.2
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o
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[\
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w
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x/L [-]

And with the equations given in Section “Modelling”, the modal
properties of the equivalent SDoF system are determined:

m" = I3m~w2-dx = 0.5mL (6.57)
= (B (w) - dx) = gt EL - (EI

k —_[O(EI (y"”-dx) = 8x 5 779.27 - (6.58)
. L,=8.45m

P* = jL :6.55m(p-\|l-dx) = 0.941-P,, (6.59)

For this example, the modal properties characterizing the equiv-
alent modal SDoF system are:

m* = 0.5-2.06 10 = 103t (6.60)
K* = 77927 5?(154 — 40666kN/m (6.61)
P* = 0.941 - 192000 = 180672kN (6.62)
o = Jk*/m* = J40666/10.3 = 62.83rad/s (6.63)
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T, - 21/ = 0.10s (6.64)

The maximum elastic deformation of the SDoF system can be
calculated using the modal pulse as follows:

I =05-P"-t, = 0.5-180672 - 0.3x10° = 27.1kN's (6.65)

The initial velocity of the free vibration is:

S /AR
v = = = 355 = 263ms (6.66)

The maximum elastic deflection is:

A = vy/® = 2.63/62.83 = 0.042m (6.67)

m, e
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* Modelling option 3

As a third option, the slab is modelled using the commercial finite
element software SAP 2000.

- Numerical Model
Force

F.

1 Impulse

1.55m 1.90 m 1.55m

} t >
0.02 ms t0(~0.3 ms) Time ‘ T=1 oo n p=p,/ ‘
T

P S

The distributed load q is replaced by n = 19 concentrated forc-
es F.:

192000
B ==

= 10105kN (6.68)

The first period of the system is:

T, = 0.100s (6.69)

which corresponds to Equation (6.64).
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And the time-history of the elastic deflection is:

0.08
0.06 / N\
E o004 l l \ A
sl N Aud
AANASE RN A \
f el [\ [ 1] \
% oo ll [ \vl \ooN W
¥ o Y AR |
-0.08 . . . .
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Time [s]
The effect of the higher modes can be clearly seen!
» Comparison
e W | P | e |
. Jj 452 | 43571 | 0.888 | 0.064 | 0.058
) )R 10.30 | 40666 | 0.941 | 0.100 | 0.042
- - - 0.100 | 0.064
i
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7 Seismic Excitation

7.1 Introduction

The equation of motion for a base point excitation through an ac-
celeration time-history iig(t) can be derived from the equilibrium
of forces (see Section 2.1.1) as:

mii +cu + f (u,t) = —miig (7.1)

where i, u and u are motion quantities relative to the base point
of the SDoF system, while f (u,t) is the spring force of the system
that can be linear or nonlinear in function of time and space. The
time-history of the motion quantities 1, u and u for a given SDoF
system are calculated by solving Equation (7.1).

4
- Ground acceleration
— 2
i) [
.g. 0 ) L
= 2 F
-4 [ N N 1 N 1
0 10 20 30 40
Time [s]
4
) Response of a T=0.5s SDoF system
Tt A AN
€ 0
e} 2
4 [ 1 [ 1 [
0 10 20 30 40
Time [s]
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From the previous figure it can be clearly seen that the time-his-
tory of an earthquake ground acceleration can not be described
by a simple mathematical formula. Time-histories are therefore
usually expressed as sequence of discrete sample values and
hence Equation (7.1) must therefore be solved numerically.

2
1
0

Uiy [m/s?]

U [m/s?]
o

1
-2

The sample values of the ground acceleration U, (t) are known
from beginning to end of the earthquake at each increment of
time At (“time step”). The solution strategy assumes that the mo-
tion quantities of the SDoF system at the time t are known, and
that those at the time t + At can be computed. Calculations start
at the time t = 0 (at which the SDoF system is subjected to
known initial conditions) and are carried out time step after time
step until the entire time-history of the motion quantities is com-
puted, like e.g. the acceleration shown in the figure on page 7-1.
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7.2 Time-history analysis of linear SDoF systems

—> U fs A

fs m f

el

m-i .
. 'm'ug(t)
Cu

(D] [k

Uig(t)

AAA u

Wy u

el

v

In the case of a linear SDoF system Equation (7.1) becomes:

mu+cu+ku = —mii, (7.2)

and by introducing the definitions of natural circular frequency
o, = +k/m and of damping ratio { = ¢/(2mw,), Equation (7.1)
can be rearranged as:

i +20o u+tou = —i (7.3)

g
The response to an arbitrarily time-varying force can be comput-
ed using:

» Convolution integral ([Cho11] Chapter 4.2)

* Numerical integration of the differential equation of motion
([Cho11] Chapter 5)
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7.2.1 Newmark’s method (see [New59])
* Incremental formulation of the equation of motion
mAU + cAu + kAu = —mAiig (7.4)

t+ At t t+At.  t. . t+At.  t.. ..
u= ut+Au, u= ut+Au, U= Uu+Au (7.5)

» Assumption of the acceleration variation over the time step:

{i(t + At)
o)
—-—> T
t t+ At ’
ii(1) = %(tﬁ#”tu‘) - t1'1+A7“ (7.6)
T
u(t) = tu+ju'(r)dr = tu+(tﬁ+%“)(r—t) (7.7)
t
T T

u(t) = "u+ fi(r)de = tu+j[tu+(tii+%i)(r—t)}dr (7.8)

t t
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tt t.. AU (T-— t)2
u(t) = ‘u+t u(r—t)+(ﬁ+7)T (7.9)

The increments of acceleration, velocity and displacement dur-
ing the time step are:

Al = M- = A (7.10)
. t+At.  t. t.. . AU
Au = u—u = (u+7)At (7.11)
t t.. Al At2
Au = 1'1At+(1‘i+7u)7 (7.12)

Introducing the parameters y and B into Equations (7.11) and
(7.12) for Au and Au, respectively, can be generalized as follows:
Au = (i + yAl)At (7.13)

t t At2
Au = uAt+(ij+2BAii)7 (7.14)

where different values of the parameters y and  correspond to
different assumptions regarding the variation of the acceleration
within the time step:

ti(t + At)

Average Acceleration:

1=

i(t)

N —
]

Y =

N—

B:

Course “Fundamentals of Structural Dynamics” An-Najah 2013

7 Seismic Excitation Page 7-5

H(t+ At

Linear Acceleration:

At
= <0.551
T 0.55

B==-,v=

(103 ) DE—— ¥

[ R
N
1

t t+ At

It is important to note that the “average acceleration”method is
unconditionally stable, while the “linear acceleration”method is
only stable if the condition At/T <0.551 is fulfilled.

However, the “linear acceleration”-method is typically more ac-
curate and should be preferred if there are no stability concerns.
For a discussion on stability and accuracy of the Newmark’s
methods see e.g. [Cho11] and [Bat96].

« Solution of the differential equation: Option 1

Substituting Equations (7.13) and (7.14) into Equation (7.4)
gives Equation (7.15), which can be solved for the only remain-
ing variable Ati:

2
(m+ cyAt+ kBA) Al = —mAii, — c'iAt - k(tum + tu‘%) (7.15)

or in compact form:
mAlU = Ap (7.16)

Substituting Aii into Equations (7.11) and (7.12) gives the incre-
ments of the velocity Au and of the displacement Au. In conjunc-
tion with Equation (7.5), these increments yield the dynamic re-
sponse of the SDoF system at the end of the time step t + At.
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 Solution of the differential equation: Option 2

Equation (7.14) can be transformed to:
Aj =20 _ 4 U (7.17)

and substituting Equation (7.17) into (7.13) we obtain:

YAu vu (=
ni = 4 + a1 B) (7.18)

Substituting Equations (7.17) and (7.18) into Equation (7.4)
gives Equation (7.19), which can be solved for the only remain-
ing variable Au:

X - m o ye _ XL
(k+B +BA Au = —mAlu +(BA+B)u+ At B)

(7.19)
or in compact form:

kAu = AP (7.20)

Substituting Au into Equations (7.18) and (7.17) gives the incre-
ments of the velocity Au and of the acceleration AX. In conjunc-
tion with Equation (7.5), these increments yield the dynamic re-
sponse of the SDoF system at the end of the time step t + At.

For linear systems we have:

* m, ¢ and k are constant throughout the whole time-history.

- 11 in Equation (7.15), as well as k in Equation (7.20), are also
constant and have to be computed only once.
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7.2.2 Implementation of Newmark’s integration scheme
within the Excel-Table “SDOF_TH.xIs”

Equation (7.15) is implemented in the Excel-Table as follows:

(m+cyAt+kBAtY) Al —mAb, YAt (uAt + tuA—t)
M = —— _ c———" — k 2
%/—J
meq da AF(t) dv d4d

* In the columns C to E the so-called “predictors” dd, dv and da
are computed first:

dd = ‘uAt+ tuATt (“delta-displacement”)
dv = At (“delta-velocity”)
—mAU_ —c-dv—k-dd )
da = = = Aii  (“delta-acceleration”)
meq

« Afterwards, in the columns F to H the ground motion quantities
at the time step t + At are computed by means of so-called
“correctors:

t+Atﬁ _ tﬁ"‘d&
t+At. t.
u= ut+tdv+(da-y-At)
Au
A
CAY = u+ dd+(da-B-Ath)
Au
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* Finally, in column | the absolute acceleration 1, at the time
step t + At is computed as follows:

t+ At.. t+At..  t+At..
= u-+ u

Uabs g

Observations about the use of the Excel-Table

* Only the yellow cells should be modified:

* The columns A and B contain the time vector and the ground ac-
celeration U, (t) at intervals At; for this ground motion the re-
sponse of a Single-Degree-of-Freedom (SDoF) system will be
computed. To compute the response of the SDoF system for a dif-
ferent ground motion iig(t), the time and acceleration vector of the
new ground motion have to be pasted into columns A and B.

* For a given ground motion U, (1), the response of a linear SDoF
system is only dependent on its period T = 2rn/®, and its damp-
ing €. For this reason, the period T and the damping { can be cho-
sen freely in the Excel-Table.

* The mass m is only used to define the actual stiffness of the SDoF
systemk = m - (ni and to compute from it the correct spring force
f, = k-u. However, f_ is not needed in any of the presented plots,
hence the defaults value m = 1 can be kept for all computations.

* In the field “Number of periods” (cell V19) one can enter the
number of periods T; for which the response of the SDoF is to be
computed in order to draw the corresponding response spectra.

* The response spectra are computed if the button “compute re-
sponse spectra” is pressed. The macro pastes the different pe-
riods T, into cell 83, computes the response of the SDoF system,
reads the maximum response quantities from the cells F6, G6,
H6 and 16 and writes these value into the columns L to P.
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7.2.3 Alternative formulation of Newmark’s Method.

The formulation of the Newmark’s Method presented in Section
7.2.1 corresponds to an incremental formulation. It is possible to
rearrange the methodology to obtain a total formulation.

The equation of motion at the time t + At can be written as:

mt+Atﬁ+ct+Atu+kt+Atu _ _mt+Atﬁg (721)
where
t+ At.. t.. ..
= utAu (7.22)
A = it A (7.23)

Using the expressions for At and Au given by Equations (7.17)
and (7.18), the acceleration and the velocity at the time t + At
can be written as:

t+ At.. 1 t+At ¢ 1 t. 1 t..
= — —u)-——u—-|—-1 7.24
E Y T (551 (724
t+AL, t+AL t Y\t. AL
i _Y_BAt( u u)+(1+B)u+At(l 2B)u (7.25)

Introducing Equations (7.24) an+dA(t7.25) into Equation (7.21) and
solving for the only unknown 2% we obtain:

- ttAt t+At_

k- tu=""% (7.26)
where:
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k =k+a, (7.27) 7.3 Time-history analysis of nonlinear SDoF systems
t+ AL t+AL, t t. y X fs 4 f,) u
p=-m “,tautautasi (7.28) ‘. . . fY:IT’MAzu_
el
m-X y y
_ Im Yc . -mXy(t) lasti
a; = + (7.29) cX elastic
BAt2 BAt
L inelastic
a, = BﬂAt + (% - 1) c (7.30) k(x,t) (real)
fy Tw,0) kK, /I
(1 v L .
ay = (2—6 - l)m + At(zB - l)c (7.31) 5,00 E?ie;)tlc
This formulation corresponds to the implementation of New- *W\/w—— 5 = Xm=x

mark’s method presented in [Cho11].
+ Strength f, of the nonlinear SDoF system

f k.,-u
1 el el
f =8 - ¢ (7.32)
Y y y

. Ry = force reduction factor

* f,; = maximum spring force f; that a linear SDoF system of the
same period T and damping { would experience if submitted to
the same ground motion U,

+ Maximum deformation u, of the nonlinear SDoF system
U, = Hp-uy,  hence Hp = uy,/uy (7.33)

*u, = yield displacement
* u, = displacement ductility
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7.3.1 Equation of motion of nonlinear SDoF systems

In the equation of motion for a base point excitation through an
acceleration time-history iig(t)

mii +cu + f (u,t) = —mi, (7.34)

of a nonlinear SDoF system, the spring force f,(u,t) is no longer
constant and varies in function of time and location.

Most structural components are characterised by a continuously
curved force-deformation relationship like the one shown by
means of a thin line on the right of the figure on page 7-12, which
however is often approximated by a bilinear curve (thick line in
the same figure).

When the loading of the nonlinear SDoF system is cyclic, then f|
is no longer an unambiguous function of the location u and also
for this reason Equation (7.34) shall be solved incrementally.

For this reason f (u,t) must be described in such a way, that
starting from a known spring force f (u,t) at the time t, the still
unknown spring force f (x + Au,t + At) at the time t + At can eas-
ily be computed.

This description of the cyclic force-deformation relationship is
known as hysteretic rule. In the literature many different hyster-
etic rules for nonlinear SDoF systems are available (See e.g.
[Saa9d1]).

In the following section a few hysteretic rules are presented and
discussed.
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7.3.2 Hysteretic rules

The next figure shows typical hysteretic rules (or models) for
nonlinear SDoF systems.

Elasto-plastic model Takeda-Model

FORCE FORCE

/

ey
K(

/ DEFORMATION

7
DEFORMATION

!

Oczabe-Saatcioglu-Model

Kabeyasawa-Model

FORCE, F
SHEAR FORCE (Tension)

/ﬁem DEFLECTION ] DEFORMATION
H (Extension)
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In the following the often used Takeda hysteretic model is dis-
cussed in some detail.

The Takeda model was first described in [TSN70] and later mod-
ified by various authors. The assumed force-deformation rela-
tionship shown in the following figure was derived from the mo-
ment-curvature relationship described in [AP88].

Small amplitude cycles

Large amplitude cycles

3

6y | 0% 5
B

A H

A+

The initial loading follows the bilinear force-deformation relation-
ship for monotonic loading mentioned in the previous section.
The exact definition of this so-called skeleton curve depends on
the structural element at hand. For example, in the case of Re-
inforced Concrete (RC) structural walls the elastic stiffness k_,
corresponds to 20 to 30% of the uncracked stiffness, while the
plastic stiffness kpl =T, kel is approximated assuming an hard-
ening factor r, = 0.01...0.05.
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Unloading occurs along a straight line with stiffness k. This un-
loading stiffness is computed by means of Equation (7.35) as a
function of the elastic stiffness k,, and taking into softening ef-
fects in proportion of the previously reached maximum displace-
ment ductility u,. The parameter o. controls the unloading stiff-
ness reduction and varies from structural element to structural
element.

ki = kg (max{uih ", ky = kg (max{|uz|H) " (7.35)

u

Reloading follows a straight line which is defined by the force re-
versal point (u,.,,0) and the point A. The location of point A is de-
termined according to the figure on the previous page as a func-
tion of the last reversal point B, the plastic strain & _ and the dam-
age influence parameter 3. The parameter 3 allows taking into
account softening effects occurring during the reloading phase.

Again, in the case of RC walls meaningful parameters oo and 8
lay in the following ranges: a = 0.2...0.6 and B = 0.0...-0.3.

These rules, which are valid for cycles with large amplitude, are
typically based on observations of physical phenomena made
during experiments.

On the other hand, rules for small amplitude cycles are based on
engineering considerations rather than on exact observations.
They are designed to provide reasonable hysteresis lops during
an earthquake time-history, thus avoiding clearly incorrect be-
haviours like e.g. negative stiffnesses.

The rules for small amplitude cycles are shown on the right of the
figure on the previous page.
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If a reloading phase starts from a force reversal point (u__,,0) lay-
ing between the two extreme force reversal point (u,..,0) and

(u,..,0), then reloading does no longer occurs towards point A,
but towards a newly calculated point X, which lies between
points A and B. The position of point X is calculated using the
auxiliary variables x' and x_ defined in Equation (7.36).

+

+ Urev = Urec + - urev_u;ec -
X _(- +j'3§p’ X_[+ — ) BS,  (7.36)
Uree = Urec Uree ™ Urec

When a load reversal occurs before point X is reached, a new
point C is defined as a temporary maximum and minimum. The
reloading in the subsequent cycles, which are smaller than the
temporary maximum and minimum is then always in the direc-
tion of point C.

These rules for cycles with a small amplitude are a simplification
of those described in [AP88], however they lead to very satisfac-
tory results and can be programmed very easily and efficiently.
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7.3.3 Newmark’s method for inelastic systems

The Newmark’s numerical method discussed in Sections 7.2.1
to 7.2.3 can be easily modified for application to nonlinear sys-
tems. The following modifications are required:

* The mass m and the damping ¢ are typically constant through-
out the whole time-history.

* The stiffness k changes during the time-history, hence m, re-
spectively k, are no longer constant.

« |f the stiffness changes within the time step iterations are need-
ed (e.g. Newton-Raphson).

* For nonlinear systems the second solution strategy presented
in Section 7.2.1 (Option 2) has the advantage that the factors

a=(2+L) andb =2 _Atf1-L)c
BAt B 2B 2

on the RHS of Equation (7.19) are constant throughout the
whole time-history and do not need to be recomputed at every
time step.

Remark

For the actual implementation of the nonlinear version of New-
mark’s time stepping method, it is suggested to use the formula-
tion presented in Section 7.4.4 in conjunction with the Newton-
Raphson algorithm described in Section 7.4.3.
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7.3.4 Example 1: One-storey, one-bay frame

VY
_D —_—
iy RV
My Beam, EIg>>Elg Mass m = 50t My
8
Il
N jas)
Column, Elg
~ MY MY ~
M ] s
12EI M \Y
H J; y Yy -1 (8
* Parameters
Columns [k [kN/m]| TIs] |f,[MPa]| V, [kN] |V,/Vg[]] A, [cm]
HEA 100 141 3.75 595 39.5 1.00 28.1
HEA 100 141 3.75 298 19.8 0.50 14.0
HEA 100 141 3.75 149 9.9 0.25 7.0
HEA 100 141 3.75 99 6.6 0.167 4.7
HEA 220 2181 0.95 543 246.7 1.00 11.3
HEA 220 2181 0.95 272 123.4 0.50 57
HEA 220 2181 0.95 136 61.7 0.25 2.8
HEA 220 2181 0.95 91 411 0.167 1.9
IPE 550 27055 0.27 185 411.4 1.00 1.52
IPE 550 27055 0.27 93 205.7 0.50 0.76
IPE 550 27055 0.27 43 102.9 0.25 0.38
IPE 550 27055 0.27 31 68.6 0.167 0.25
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7.3.5 Example 2: A 3-storey RC wall

As a second example, the behaviour of the RC wall WDH4 pre-
sented in Section 7.6.3 is simulated. Wall WDH4 is actually a 3-
DoF system and its behaviour is simulated by means of an equiv-
alent SDoF system. For this reason the relative displacement of
the SDoF system shall be multiplied by the participation factor
I" = 1.291 to obtain an estimation of top displacement of WDH4.

To simulate the behaviour of WDH4 a nonlinear SDoF system
with Takeda hysteretic model is used. The parameter used to
characterise the SDoF system are:

¢ =5%,f, = 1.2Hz, R, = 2.5, 1, = 0.03,
o=02,p=-015 (7.38)

where ( is the damping rate, f_ is the natural frequency of the
SDoF system for elastic deformations (i.e. with k = k), and R
is the force reduction factor. The parameters given in (7.38) were
subsequently adjusted to obtain the best possible match be-
tween the simulation and the experiment. In a first phase, a cal-
culation using a linear SDoF system is performed. The latter has
the same damping rate and natural frequency as the Takeda
SDoF system and allows an estimation of the maximum elastic
spring force f_; and of the maximum elastic deformation u_,. The
yield force fy and the yield displacement uy of the Takeda SDoF
system are then estimated using the force reduction factor R, as
follows:

f u
1 |
R === (7.39)
y oo f
y y
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Time-history of the top displacement

The time-history of the top displacement (see below) shows that:
(i) plastic phenomena affect the behaviour of the wall WDH4 sig-
nificantly, and that (ii) the Takeda-SDoF System is able can de-
scribe the global behaviour of the wall WDH4 quite accurately.

80Y[Y[Y[Y[T[T[Y[Y[T[Y[Y[T[Y[Y[T[T[Y[Y
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Hysteretic behaviour of the nonlinear SDoF System

Force-deformation relationship of the Takeda-SDoF System
subjected to the same ground motion as Wall WDH4. In both di-
agrams the same curve is plotted: On the left in absolute units
and on the right in normalised units.

8OVTTT[TTT[TTT[TTT TTT[TTT[TA Z :TTTT[TTTT[TTTTTTTT[TTTT TTTT[TTTT‘TTTT:
60 - = = 1.0 -——=
— r 1 ¥ F .
Z 401 = [ ]
=t g 05 .
o 20 o H -
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2201 // 7 r 1
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7.4 Solution algorithms for nonlinear analysis
problems

In this section the more general case of system with multiple de-
grees of freedom is discussed. SDoF system can be seen as a
special case thereof.

7.4.1 General equilibrium condition

The general equilibrium condition for elastic and inelastic static
and dynamic systems is:

F(t) = R(t) (7.40)

In this equation F(t) is the time-dependent vector of the internal
forces of all DoFs of the structure and R(t) the time-dependent
vector of the external forces.

The vector R(t) depends on the problem analysed and is known.

7.4.2 Nonlinear static analysis

For linear-elastic systems the internal forces can be computed
by means of Equation (7.41):

F = KU (7.41)

where U is the vector of the displacements of the DoF and K is
the stiffness matrix of the structure. Equation (7.40) can there-
fore be rewritten as

KU = R (7.42)
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In Equation (7.42) R is known and K is also known, therefore
the unknown vector U can be computed by means of Equation
(7.43):

U=-K'R (7.43)

The equilibrium condition of Equation (7.40) can only be solved
for linear-elastic systems by means of Equation (7.43).

For inelastic systems, due to successive yielding of the struc-
ture, the stiffness matrix K is not constant over the course of the
loading.

For this reason Equation (7.40) must be solved in increments
(=small load steps) and iteratively. The approach is as follows:

* The nodal displacements ‘U at the time t are known from the
previous load step;

* The nodal displacements Ay at the end of the load step At
are determined by means of n iterations of Equations (7.44)
and (7.45).

t+AtKiT—lAUi _ t+AtARi—1 (7.44)
t+AtUi _ t+AtUi71+AUi (7.45)
where:
L t+ At i
t+AtAR1 1 _ R_t+AtF1 1 (746)

and K is the tangent stiffness matrix of the structure.
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The actual solution of the equilibrium conditions of Equation
(7.40) is often obtained by the numerical method for the iterative
solution of nonlinear equations that was originally developed by
Newton.

In the next section the so-called Newton-Raphson Algorithm for
the solution of Equation (7.40) will be discussed.

7.4.3 The Newton-Raphson Algorithm

The Newton-Raphson Algorithm allows the solution of the load-
ing of nonlinear springs with the following equilibrium condition:

F(U(t)) = R(t) (7.47)

F(U(t)) = R(t) represents the internal spring force, which is a
given nonlinear function of U(t). The external force R(t) is a
function of the time t.

For a system with 1 DOF the solution method of the Newton-
Raphson Algorithm can be illustrated by the figure on page 7-29.

The algorithm consists of the following steps:

0) Up to time step t a solution was obtained and at time step t
the system is in equilibrium with (U, R);

1) The initial conditions at the beginning of the iteration are de-
termined. The iteration commences with the nodal displace-
ment, the tangent stiffness and the internal force that have
resulted at the end of the Erewous time step t. The external
initial loading increment ‘AR” within the time step is de-
termined by Equation (7.51).
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Displacement: Ayt -y (7.48)
Tangent stiffness: ' "'k} = K, (7.49)
Internal force: CTARD _ g (7.50)

t+ At
External force: AR = TR -UTAE (7.51)
2) Computation of the i-displacement increment AU' by

means of Equation (7.52) (i starts from 1).
For systems with more DoFs, ‘"K' is a matrix (tangent
stiffness matrix) and Equation (7.52) is best solved by means

of a LDL"-decomposition of the matrix ' “'K .

t+AtKl ]AU _ t+AtARi7] (752)

Computation of the displacement ' "2'U’ at the end of the it
iteration

t+AtUl _ t+AtUi71 +AU1 (753)

t+At i

Computation of the internal force and the new external

force (residual force) 'R’

i t+ At i
TAAR = T TR-TAE (7.54)

If AU' and/or ' "*AR' are so small that they can be neglected:
Continue with Step 7;

Determine the new tangent stiffness ' " At

Step 2;

If the analysis time has not yet ended, start a new time step
and start again the procedure at Step 1.

+ and repeat from
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Comments on the Newton-Raphson Algorithm

* The Newton-Raphson Algorithm for systems with several or
many DoFs follows exactly the same procedure as the algo-
rithm for SDoF systems. Only difference: Scalar values are re-
placed by the corresponding vectorial quantities.

» Apart from the Newton-Raphson Approach (“Full Newton-
Raphson iteration”) the “Modified Newton-Raphson iteration”
is often applied. This algorithm is illustrated on page 7-30.

» Unlike in the Newton-Raphson Algorithm, in the Modified Newton-
Raphson Algorithm the tangent stiffness matrix K is updated only
at the beginning of the time step and is kept constant over all the
iterations within this time step.

* To reach the target displacement AU more iterations are re-
quired for the Modified Newton-Raphson Algorithm than for the
Full Newton-Raphson Algorithm. However, these can be comput-
ed more quickly since assembling the tangent stiffness matrix K
(Step 6) and in particular its LDL' -decomposition (Step 2) are
only required at the beginning of a time step and not at each itera-
tion within the time step. This is particularly advantageous for sys-
tems with many DoFs.

* In most FE-analysis programs both Newton-Raphson Algo-
rithms as well as other algorithms are typically combined in a
general solver in order to obtain a successful convergence of
the iteration process for many structural analysis problems.

 Other algorithms for the solution of the equilibrium conditions
can be found in Chapters 8 (static analysis) and 9 (dynamic
analysis) of [Bat96].
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Convergence criteria

* Ain-depth discussion of the convergence criteria can be found
in [Bat96] and [AEM86]. This section provides only a short
overview.

* In Step 5) criteria are required in order to decide whether con-
vergence of the iteration was obtained. Possible convergence
criteria can be based on displacements, force or energy con-
siderations.

» Since within the time step the unknown target displacement
Ay needs to be determined, it makes sense to prescribe that
the target displacement is reached within a certain tolerance
interval. For this reason a possible displacement criterion for
the convergence is:

e (7.55)

where ¢, is the displacement convergence tolerance.

- The vector '"*'U is actually unknown and must therefore be ap-
proximated. Typically MY s used in conjunction with a suffi-
ciently small value of e,.

It is important to note that in some cases — although the criteria de-

scribed by E(iuation (7.55) is satisfied — the wanted target dis-
t+ At

placement U has not been reached.

This is the case when the computed displacements vary only
slightly during one iteration but these small increments are repeat-
ed over many iterations.

Such a situation can result when the modified Newton-Raphson
Algorithm is used (see page 7-30).
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* For this reason the displacement criterion is typically used in con-
junction with other convergence criteria.

* A force criterion, which checks the residual forces, is given in
Equation (7.56).

t+ At + i
” R-""F H <e, (7.56)

Ht+AtR B tFH

er is the force convergence tolerance, which checks the mag-
nitude of the residual force after the i"-iteration against the first
load increment of the time step.
* As for the displacement criterion, this force criterion should not be
applied on its own because in some cases the target displacement
"My may not have been reached. This may happen for systems
with small post-yield stiffness.

» The energy criterion in Equation (7.57) has the advantage
that it checks the convergence of the displacements and the
forces simultaneously.

(AUi)T(HAtR—HAtFFI)
<e

1.T t+At t - E
(AU) ( R-F)

(7.57)

ep IS the energy convergence tolerance, which checks the
work of the residual forces of the i'-iteration against the work
of the residual forces of the first load increment of the time
step.

Choosing the tolerances ¢, € or ¢ too large, can yield wrong

results, which can lead to the divergence of the solution in the
following load steps.
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Choosing the tolerances e, ¢ or ¢, too small, results in an un-
necessary increase of the required iteration steps. The in-
creased accuracy is typically not useful.

For numerical reasons it can also happen that too small con-
vergence tolerances do not allow to reach convergence at all.

For strongly inelastic systems it is recommended to check
the sensitivity of the results to the chosen convergence
criteria and the chosen tolerances.

7.4.4 Nonlinear dynamic analyses

Similar to Equation (7.44) the equilibrium condition for nonlinear
dynamic analyses is:

Mt+AtUi+Ct+AtUl+(t+At i—1 t+AtK1 ]AU) _ t+AtR (758)

t+AtU1 _ t+AtUi71 +AU1 (759)
For base excitation by means of ground accelerations the vector
of the external forces is computed according to Equation (7.60).

t+AtR _ _M1t+Atag (760)

where M is the mass matrix of the structure, 1 the norm vector
with entries of unity for all DoFs in the direction of the excitation
and '"*'a, the ground acceleration at the time t+At.

For this type of excitation the differential equation of motion
(7.58) has to be integrated numerically and — due to the inelas-
tic behaviour of the system — the equation must be solved itera-
tively and incrementally.
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The numerical time integration of Equation (7.58) is often per-
formed by means of the Newmark’s Algorithms ([New 59]). Ac-
cording to these algorithms the displacement vector at the time
t+ At is estimated as follows:

2
Ay - tU+tUAt+[(1—2B)tU+2Bt+AtU]— (7.61)

A = U - Oy M)A (7.62)

From Equation (7.61):

t+At.. 1 t+ At 7t 7Lt.7 1-2 te.
U= BAt sC "U-U) BAtU (_ﬁzﬁ ) U (7.63)
Substituting Equation (7.63) into (7.62):
t+ At . _it+At Lt 71{. ,_’\L .
U= gkt 0)+(1 B) v+(1 23) UAt (7.64)

The expressions for the displacement, the velocity and the acceler-
ation at the time t + At from Equations (7.59), (7.64) and (7.63) can
be substituted into the differential equation of motion (7.58) which
can then be solved for the only remaining unknown AU':

t+ At 1 Y )
K. +—M+ C)AU' =
( T BAt BAt

t+ At t+ At -1

R
M[ﬁ(”%‘ 'y B_AtU (2[5 1)‘13}_

C[BLM(HAtUl lftU)+ B) YB) UA‘[
(7.65)
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or in a more compact format:

t+AtI~<,ir_1AUi _ t+AtARi—1 (766)

Equation (7.66) corresponds exactly to Equation (7.44) and is
also solved iteratively by the Newton-Raphson Algorithm.

When dynamic analyses are carried out, typical convergence
criteria also consider the inertia forces and, if present, damping
forces. Possible, often used convergence criteria are:

Ht+AtR7t+AtFi—17Mt+AtU~v1717Ct+AtU1—1H - (7 67)
RNORM -F )
(AUi)T(t+AtR—t+AtFi71—MHAtUFI—CHAt['JFI)
1. T t+At t t.. t. Sé&p (7.68)
(AU) ( R-F-MU-CU)
with
RNORM = Yymy; - g (7.69)

As alternative, depending at which point during the iteration proc-
ess convergence is checked, both criteria can be rewritten as:

HH—AtR_t+AtFi_Mt+At[~jl_Ct+AtﬁiH - (7 70)
RNORM - °F )
(AUi)T(HAtR— t+AtFi 3 Mt+AtUi B Ct+AtUi)
1T t+At, t te. t. Ség (7.71)
(AU) ( R-F-MU-CU)

As for static analyses, different convergence criteria exist also
for dynamic analyses and a discussion of these can also be
found in [Bat96].
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7.4.5 Comments on the solution algorithms for nonlinear
analysis problems

» Contrary to the analysis of elastic systems, the analysis of in-
elastic systems is often interrupted before the targeted load or
deformation state is reached.

» This situation arises if in one of the time steps convergence cannot
be reached.

* Typical causes for the failing convergence
* The convergence tolerances are too small or too large;
» The chosen values for the parameters of the solution algorithm are
not appropriate;
* The solution algorithm is not suitable.
Typical example: If special measures are not taken, the algorithms
of the Newton family are not able to solve a system with a global
negative post-yield stiffness;
 Apart from the algorithms by Newmark, many other algorithms
have been developed for solving the differential equation of
motion (7.58) (e.g. “Houbolt Method”, “Wilson 6 Method”, “a-
Method”). These methods are described in detail in [Bat96].
The “a-Method” allows to introduce numerical damping, which
can be useful. The “a-Method” is described in detail in
[HHT77].

» Choice of the time step At for static analyses:

 For static analyses the time t has no physical meaning. For this rea-
son the size of the time step At can be chosen almost arbitrarily.

» As long as the algorithm converges and the variation of the exter-
nal loads is captured correctly, the size of the time step At has only
a minor influence on the results.
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* However, when geometric nonlinearities are considered or when * An in-depth discussion on the accuracy of time-integration meth-

the constitutive laws are a function of the strain history, care should
be taken also for static analyses when choosing the size of the
time step.

The time step size influences the convergence of the algorithm:
For small At the algorithm converges more quickly; however, more
steps are required.

Time steps of a variable size can be advantageous. If the system
is elastic or almost elastic, large times steps can be chosen. If the
system is close to its capacity, small time steps should be chosen.

Certain analysis programs (see for example [HKS03]) determine
the time step size within chosen limits as a function of the conver-
gence and the number of required iterations.

» Choice of the time step At for dynamic analyses

» The objective of the dynamic analyses is the solution of the differ-
ential equation of motion (7.58) between the time t and the time
t + At. For this reason the choice of the time step At plays always
an important role regarding the accuracy of the solution.

The accuracy of the integration of the differential equation of mo-
tion (7.58) depends on the chosen time-integration algorithm and
on the ratio given by Equation (7.72), where T, are the natural pe-
riods of the system. To capture the motion components due to
higher modes the time step At has therefore to be reduced.

At
T (7.72)

Certain time-integration algorithms can become instable if the time
step size At is too large.
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ods and on so-called “conditionally stable” integration methods
can be found in [Bat96].

Example:

The time-integration method by Newmark with y = 1/2 and
B = 1/6 (linear variation of the acceleration over the length of the
time step, see Section 7.2.1) is only stable if the criterion given in
Equation (7.73) is met for all natural periods T of the system. For
systems with many DoFs, higher modes can be especially prob-
lematic and a very short time step is generally required when this
time-integration method is used.

% <0.551 (7.73)

n

For this reason the “unconditionally stable” time-integration algo-
rithm by Newmark with y = 1/2 and B = 1/4 is often used in
seismic engineering.

7 Seismic Excitation Page 7-40



Course “Fundamentals of Structural Dynamics” An-Najah 2013

7.4.6 Simplified iteration procedure for SDoF systems with
idealised rule-based force-deformation relationships

In the case that the hysteretic behaviour is described by a se-
quence of straight lines, a so called “idealized rule-based force-
deformation relationships” like the Takeda model presented in
Section 7.3.2, it is possible to avoid implementing a Newton-
Raphson Ilteration strategy. In this case adjustments are needed
in the case of:

« Stiffness change during loading
* Velocity reversal
» Transition between unloading an reloading.

In first case a secant stiffness can be iteratively computed until
the target point lays on the backbone curve, while in the second
and third case it is often enough to reduce the size of the time
step to limit error. These strategies are shown in the following fig-
ure:

Stiffness change Velocity reversal Unloading-reloading
fs fs fs transition
t+ At
e At/10
[
W/ I t+ At
I I
— =1+ At Afs t //
t !
t+At
§ t
~N
st=
u u t+ At / u
/
At
-
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7.5 Elastic response spectra

7.5.1 Computation of response spectra

g
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Seismic Series of Response of the Elastic velocity
action SDOF systems SDOF systems response spectra
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ag(t) «—»
|

* Response spectra are used to represent the seismic demand
on structures due to a ground motion record and design spec-
tra are used for the seismic design of structures.

* Response spectra shall be computed for all periods and
damping rates likely to be found in structures.

» Unless specified otherwise, the response spectra presented in
the following belongs to the north-south component of the May
18, 1940 “El Centro” Earthquake (see [Cho11]).

 Additional ground motion records can be downloaded for free
from:
1) http://db.cosmos-eq.org/scripts/default.plx
2) http://peer.berkeley.edu/nga/
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» “El Centro”: Linear response spectra
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» Limits of response spectra

* eu(t) =0 u(t) = —ug(t)
very very
stiff soft
4 4 -4 4
a0 40T u=0) 4 WO T
i, +2ou+ w?u = 0 U, +2Cou+ w?u = 0

= 0= u,(t) = fi(t)+1’ig(t) = fig(t) u(t) = —ﬁg(t) =u(t) = —ug(t)
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7.5.2 Pseudo response quantities
* Pseudo-velocity S,

Spy = WS, (7.74)
- S, has units of a velocity

- Spy is related to the peak value of the strain energy E

2 2 2
kSy  k(S,,/o) mS
= < = pv - pv
E, 3 > 5 (7.75)

* Pseudo-acceleration

Spa = ©Sy (7.76)
- S,, has units of an acceleration

- S,, is related to the peak value of the base shear V

V = kSy = k(S,,/0%) = mS (7.77)

pa
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* True vs. Pseudo response quantities
—— Acceleration ]
------ Pseudo-acceleration |

£=5% i
/ —

¢ =50% -

Absolute acceleration [m/s?]
()]
I

0 ! 1 e T— ==
0.01 0.10 1.00 10.00 100.0
or ' ' — Velocity ]
I S PR Pseudo-velocity |
@
£ - — o _
= £=5%
£ L -
o 05 _
>
[ - -
2
© L i
]
o Y 2 N CE T T LT PR -
0.0 IEFEREEEL 1 L e e
0.01 0.10 1.00 10.00 100.0

Periode [s]

* For { = 0 are acceleration and pseudo-acceleration identical.
* For T = « the pseudo-velocity tends to zero.

* Pseudo-velocity and pseudo-acceleration match well the true mo-
tion of a SDOF system with £ <20% and T< 1s
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* Remarks on the Pseudo-acceleration « Combined D-V-A spectra
10___I___I__I___I__I___I___I__I___I___I__I___I__I___I___ SpVZ(DSd log(SpV)=log((,0)+log(Sd)
“| — Pseudo-acceleration : log(S,,) = log(f) +log(2m) +log(S,)

- Pseudo veloc:lty PN log(S

L o
/\/\ /\,\ / \
0.0 f—=n Il \

[
’ \/,\l 1 \ !
L I f \‘ Il

- Y \I \ ’J !

v v

—log(T) +log(2m) + log(Sy)

pv) =

S

Spv = —O‘;—a log(S

o max [7]

o) = —log(®) +log(S,,)
log(SpV) = flog(f)flog(ZTc)Jrlog(Spa)

vl

log(SpV) = log(T)—log(2m) + log(Spa)
HIECEREE -1 x Displacement

_1-0 ________________________________ [ T T LI II T T LI II T T T 1T II T T i
1 1 1 1 I 1 1 1 1 I 1 1 1 1 -
0 5 10 15 |

T T T T I T T T T I T T T T
{; — Pseudo- accelerathn >0 100¢ E
; :__ - — - Pseudo-velocity . .
i N |
é ." \ /\ ..N \/\/\/{1 "\ '\M [\Y " /\A“ M ]
K L) Al \/} S 1

: YA \ - - 1

1
Pseudo-velocity Sy, [cm/s]
>

Time [s]

ii (1) = 20wu(t) (7.78)
Time-history of the pseudo-acceleration A(t)

e For{ =0: u(t) = A(t)
« For{(>0: Atu,,:u, = A however A<A_. .
Shift of the location of the maxima through damping

/’ TTTT T

Penod [s]
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7.5.3 Properties of linear response spectra 7.5.4 Newmark’s elastic design spectra ([Cho11])

N

IS
=

100

Spa/ ag [

@
g 0
= 0 o5 10 1s 20 25 30 I[S]
3
>
-(_g 10__ IOE T 1T rrvrreg T T N DN S 3 5 | T T LI N B B | T T E
4 . i
IO : 5 - \@ -
) i Mean + 10|
8 ' Y
2 & § \bQ -
'09/ D ) %b
1F 2/’
C Q \ 7]
1 : 7 alk % 8]
2 osf y/ & & ]
O’ o I /, o‘ " —
> I i [N
g ¢ i
- F @ &~ J
2 2 3
\ oo 02f |5 0 4
1 11 111 I 1 1 1 11 I 1 1 1 (I I 1 1 Ell.w § :3' 8
0.1 1.0 10.0 o1k ® I S ;.
Period [s] C I 9, ol i ]
- < . S
Fa =~ [:" “
* Response spectra typically show spectral regions where the re- 0.051 .
sponse is sensitive to different motion quantities, i.e. they show an ( 3 ]
acceleration sensitive region (small periods), a displacement s i1 bolsBLAL sloisjer siubou iR 2 7t S
sensitive region (large periods) and a velocity sensitive region 0.02 005 01 02 0.5 1 2 5 10 20 50
laying in between. T [s]
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* Newmark’s elastic design spectra
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» Elastic design spectra according to SIA 261 (Art. 16.2.3)

6 T
Zone 3b, { = 5%

N

Pseudo-acceleration S, [m/s?]
w

N

-

II|IIII|IIII|IIII
N

--- Ground Class B

Ground Class A

- Ground Class C

--= Ground Class D

T T T TT II T T T 1TTT II T T T 1TTT II T T
¢ =5% ]
100 —
- — ﬂ :
o 2\’ :
E | / N
%) 9 \
= AN
g 10 /A -
| - d a 4
g I ' ‘ F]
(] A
g )
_A .
1€ : =
: % ' 5
ETA=1/33S ETB=1/85 | iTE= Os\g |
0.1 1.0 10.0 Te=33s
Period [s]
Median(50%) One sigma (84%)
Damping { o, o, 0y o, o, 0y
2% 2.74 2.03 1.63 3.66 2.92 2.42
5% 212 1.65 1.39 2.71 2.30 2.01
10% 1.64 1.37 1.20 1.99 1.84 1.69
20% 1.17 1.08 1.01 1.26 1.37 1.38
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Slllllllll\‘l

S o

-— Ground Class E

o111

Ground class A:
e Ground class B:

e Ground class C:

* Ground class D:

e Ground class E:

e Ground class F:

0.10 1.00 1

.00
Period [s]
firm or soft rock with a maximum soil cover of 5m

deposit of extensive cemented gravel and sand
with a thickness >30m.

deposits of normally consolidated and unce-
mented gravel and sand with a thickness >30m.

deposits of unconsolidated fine sand, silt and
clay with a thickness >30m.

alluvial surface layer of GC C or D, with a thick-
ness of 5 to 30m above a layer of GC A or B.

deposits of structurally-sensitive and organic
deposits with a thickness >10m.
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* Displacement elastic design spectra according to SIA 261 » Elastic design spectra according to SIA 261 (linear)
25 ; —_—— — ; ——— T e~ -~ -~ -~ .~~~ 1t T T — ]
L Zone 3b, { = 5% ] it W . ——— Ground Class A
’ = 1 . -
- e E — 5_—/.-'_,,'_ ____________ 5\ N e Ground Class B —
20— Ground Class A / — £ L G N TTmee Ground Class C ]
: ---------- Ground Class B /'I : U;i 4::1:?1 ‘\ '\\ _____ Ground Class D_:
5§ L --——-- Ground Class C ! i IS L N T - Ground Class E 7
— / s S —
g’ --—-- Ground Class D S . 5 3H - —
5k = - Ground Class E ; ;T . S I S ]
g - q / RN - z ) ; e e
o » / = °~. ]
.TE 10—_ // /l i é - T T~ T N
o - e S T i T —
o ’ - Zone 3b, { =5% ]
L o v e
- 0.00 0.50 1.00 1.50 2.00 2.50 3.00
B i Period [s]
— ». ;‘
061 X R T T e S
' ' Period [s] ' ' E ——— Ground Class A E
SEREEEEEEEEE Ground Class B ST T T T T T T -
» The displacement spectra are computed from the acceleration 20— _____ Ground Class C // -]
spectra using equation (7.79) T [ - —-- Ground Class D - 1
S g 15-—- - Ground Class E -~ -
— _pa £ [ T S
Sq = =3 (7.79) s p e R
Q) g T - o ]
a 10— e e —
« Displacement spectra are an important design tool (even within g C . Pt
force-based design procedures) because they allow a quick esti- B Z
mate of the expected deformations, hence of the expected dam- S ]
age. C Zone 3b, { =5% 4
ol L ! R R SRR SR
0.00 0.50 1.00 1.50 2.00 2.50 3.00
Period [s]

7 Seismic Excitation Page 7-53 7 Seismic Excitation Page 7-54



Course “Fundamentals of Structural Dynamics” An-Najah 2013

* Elastic design spectra: Newmark vs. SIA 261

3.5[C T T L ]

- —— Elastic design spectrum according to -

C SIA 261, Ground Type A ]

3.0 — R P PPRI —

i Bf------- i C {=5% -

25— A L —

T 20 -
< r N
w 15— . -
1.0 ‘\ _:
I Elastic design spectrum according to .

05 SIA 261, Ground Type B ]

E - — - Newmark’s elastic design spectrum E

0.0C L | L s

0.01 0.10 1.00 10.00
Period [s]

» The SIA 261 spectra, like the spectra of the majority of the stand-
ards worldwide, were defined using the same principles as New-
mark’s spectra.

» However, different ground motion were used:

- SIA 261 takes into account different ground classes;

- Different seismic sources were considered;

- A larger number of ground motions was considered.
* Note: in SIA 261 the corner period T, is not defined.
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7.5.5 Elastic design spectra in ADRS-format (e.g. [Faj99])
(Acceleration-Displacement-Response Spectra)

Spa = ©2S,

15[

Spa [9]
Sq [cm]

0 TS T T 0 1 27734 TS
Period [s] Period [s]

0.5f

0.4 T = const.

0.3

Spa [9]

0.2}

0.1F

0.0L . . ]

0 5 10 15
Sq [cm]

Periods T correspond to lines running through the origin of the
axes, because:

Spa = ®?S, and after reorganizing: T = 2= [Sq/Spa

7 Seismic Excitation Page 7-56



Course “Fundamentals of Structural Dynamics” An-Najah 2013

* Elastic design spectra in ADRS-format

0.5 7 1 — T

- — - Elastic design spectrum according to 7]

N A SIA 261, Ground Type B ]

“ —— Elastic design spectrum of an .

04 \ earthquake with equal ag max =

N _

N T=0.77s: Overestimation ]

L . . _

] " T=0.87s: Underestimation _]

= [ ]

0.2f— . £=5% ]

0.1+ "7 _

- 1 -

- : —

ool . o =
0 5 10 15

Sq [cm]

» Design spectra are defined based on averaged response spectra.
For this reason, the spectral values of single response spectra
may differ significantly from the design spectra.

* This is a crucial property of design spectra and should be
kept in mind during design!

Course “Fundamentals of Structural Dynamics” An-Najah 2013

7 Seismic Excitation Page 7-57

7.6 Strength and Ductility

7.6.1 lllustrative example
Comparison of the time history analyses of an elastic and an in-
elastic single-degree-of-freedom system (SDOF system):

A f Telastic = Tinelastic

7

|
} inelastic }
| | U
uy Uy Um
f
R, = fil: Force reduction factor (7.80)
y
£ o Maximum restoring force that the elastic SDOF system(7 81)
el reaches over the course of the seismic excitation Uy (t) )
fy: Yield force of the inelastic SDOF system (7.82)
um . e
u, = —:Displacement ductility (7.83)
u
y
U Maximum displacement that the inelastic SDOF system(7 84)
m* reaches over the course of the seismic excitation Uiy (1) )
uy: Yield displacement of the inelastic SDOF system (7.85)
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* Results Quantity Elastic SDOF  Inela. SDOF R,=2 Inela. SDOF R =6
o5 T T 11 ]
- Elastic SDOF system ] Tls] 2.0 2.0 2.0
T S N | I | I Inelastic SDOF system (Ry=2)_: Fmax [kN] 134.70 67.35 22.45
E ————— Inelastic SDOF system (R,=6) E R, [ - 50 6.0
E 00 | E uy [m] - 0.068 0.023
g 0.00:\, /\ /\ ﬂ /\ ;\V /\v/\\/\v,\ ] U [M] 0.136 0.147 0.126
8 - i U \/,v : \//\ ] A [-] - 2.16 5.54
g -0.05 ;"‘1‘ ‘ ,Il \' \' \I'- H‘I\/ AT 7
C IR VIUAVE LU Vi ] « Comments
L vy "o
010 N » Both inelastic SDOF systems show a stable seismic response.
-0.15: A B | ."-":. NP S P R R B ]
0 5 10 15 20 25 30 35 40
Time [s]
150 [ T T T T T T T T T T T T T T T T T T T T T T T T ]
100 .
.
g C ]
g of ]
: o < :
50 =
Elastic SDOF system .
100 7 e Inelastic SDOF system (Ry=2) ]
I |Inelastlc SDOF system (Ry 6) ]
150 L ! T . e . .
-0.15 0.10 -0.05 70,00 005 010 0.15

Displacement [m]
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7.6.2 “Seismic behaviour equation”

For seismic collapse prevention, the following approximate rela-
tionship applies

”quality” of seismic behaviour = strength X ductility (7.86)

To survive an earthquake different combination of strength and
ductility are possible:

4 Strength required to resist
seismic force F
A
F I'_’I Ideal elastic
—> High strength — no ductility demand response
| =1 _
Essentially elastic
response
- =15 -
Au
Ha Xy
. ) . Response with
‘ ? Medium strength — medium ductility demand limited ductility
kA b Ay
/ Ux = 3.5 —
/ @ Low strength — high ductility demand II'JCL;I;}(/)K?SZCUIE
Ho =8 - o
Ductility demand
maybe too large
D>

Displacement A
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» More realistic representation of the decision possibilities

4 Strength required to resist
seismic force F

A
1

Ideal elastic
High strength — no ductility demand response

- =1 ——=

F
—

Essentially elastic

response
. TS I —
Au
HA=AC
Y o Medium strength Response with
| |~ medium ductility demand limited ductility
wA, b Ay
ppa =35 ———
Low strength ° Fully ductile
— high ductility demand response
Ha=8 - .
Ductility demand

maybe too large

v

Displacement A

If the strength of the structure reduces, the stiffness typically re-
duces too.

* If the masses do not change significantly (which is typically the
case), the fundamental period T of the softer structure is longer.

 Structures with a longer fundamental period T are typically sub-
jected to larger deformations, i.e., the deformation demand is larg-
er.
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7.6.3 Inelastic behaviour of a RC wall during an earthquake 7.6.4 Static-cyclic behaviour of a RC wall

 Moment-curvature-relation-
ship at the base of the plas- 100

tic hinge zone. i
50

* Despite reaching and ex- §
ceeding its elastic limit the £ ©
wall did not collapse. é 0
* The plastic deformation ca- [
pacity of structures canreal- ~ ~100¢
ly be taken into account for PR RS NP S S S
-30 -20 -10 O 10 20 30

seismic design purposes. Curvature [1/km] Wall WSH6 [DWB99]
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» Hysteretic behaviour of the RC wall under static-cyclic loading

5001 1T L E R B I

: g

400F Wall WSH3 7 /3
300 =

— 200F / 3
z o E
= £ 3
o 100K 3
= o 3
kel - 1 1 L
S FHA=0  Ua=5 A=t Has Ha=4 Ha=5S pa=63
S -100F =
3 E =
< _200F =
_3005— ////// ’ —E
~400F- 3
-500E =~ - |— AP B B S P N R B R

-100 -80 -60 -40 -20 0 20 40 60 80 100

Top displacement [mm]

i - = R P B

Plastic region of test unit WSH6 (left) and close-up of the left boundary region (right). Both pho-
tos were taken at displacement ductility 6.
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7.6.5 General definition of ductility

 Force quantity Ductility demand noo=

_m
£ Yy
(moment, shear force, axial force, ...)
Ductility capacity: —u = —*
Strength Y
Nominal yield Maximum Ultimate
deformation deformation deformation
D>
sy eem AT

Deformation quantity

(strain, curvature, rotation, displacement, ...)

« Comments

» The ductility capacity is a property of the structural member.

» The ductility demand is a result of the seismic excitation and also
a function of the dynamic properties of the structure.

» A structural member survives the earthquake if:
Ductility capacity = Ductility demand

» The structural member fractures when locally the deformation ca-
pacity of the structural materials (i.e., their strain capacities) are
reached. The ductility capacity is therefore exhausted.
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7.6.6 Types of ductilities

&y mgu
strain
ductility Ne— —N
I
M PLY
curvature | ‘\
ductility
M PLY
rotation ] ‘1
ductility j_ L,
ey
Ou
A All
Lﬁ
/
displacement ,/
ductility F

|.1lllll

o

He

m

=
<
|
==

c

>

HA

>
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7.7 Inelastic response spectra
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Force reduction factor Ry

10

Ry [-]

Tn  |Tg

¢ =5%

RyzuA

Equal displacement principle

Iy —
f Ry = Ha
el
elastic
—elasto-
£, plastic

1.0

10,0

Period [s]
Equal energy principle
£
s = 2u,—1
ol Ha

el

plastic

Um
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Displacement ductility u ,

Ay, T . Tc T Te [T
\\ N Cz 50/0
10 —
= L ) -
= F : R, =67
i AN o
‘;C: : . " || ,' \I"‘ |'(\.\ : - _R_y_zfl:
£ l\/r I i !
[0} R VAR ] i
O ~ Wi, g Ve ’
o By Yoo
% 'I'I 1\ I/
5 B \vl Ry::2
0.1 1.0 10.0

Period [s]

* In the small period range, already small reductions of the elastic
strength of the SDOF system vyield very large ductility demands.

« If the ductility demand is very large, it can be difficult to provide the
structure with a sufficiently large ductility capacity. This problem will be
further discussed during the design classes.

* Also in the large period range — where the “equal displacement princi-
ple” applies — large discrepancies between real and estimated ductility
demand can occur.

* The “equal displacement principle” and the “equal energy principle”
are “historical” Ry-u,-Ty, relationships. In recent years a lot of research
has been done to come up with more accurate formulations (see e.g.
works by Krawinkler [KN92], Fajfar [VFF94], Miranda [Mir01], ...)
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7.7.1 Inelastic design spectra

* Inelastic design spectra in combined D-V-A format

100

Vy [cmi/s]

121 1A

0.1 1.0 10.0
Period [s]

Note the new axes: D_. =u_,V. = o.u , A = olu
y y' vy n"y

where: u, = yield displacement
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* Newmark’s inelastic design spectra [NH82]

T T LI L II T T LI L II T T L T T
C = 5% i
i Elastic design |
100 |- -
L O -
E. 10 -
> F i
K F]
12
2
"A S
1€,2 D
a F
‘TA=1/33s i Tg=1/8 Te= C
{ AI 11 1 ISI : B 1 \ks 1 1 1 I 1 1 11 1 11 TE ?S \t: 1
0.1 1.0 10.0 TE=33s
Period [s]
* Maximum displacement of the SDOF system
Up = Ha- Dy
* Yield strength of the SDOF system:
fy =m- Ay
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Construction of the spectra using Ry-ua-Ty, relationships

The inelastic design spectra are computed by means of Ry-Ha-
T, relationships:

1
Ay = Spa, inelastic R_ ’ Spa, elastic (787)
y
M
D = Sd, inelastic E ’ Sd, elastic (788)
y

It should be noted that:

2
Spa, inelastic #0°- Sd, inelastic (7 . 89)

* Ry-ua-T,, relationship according to [NH82]

Where:

1 T, <T,
Quy-DY? T, <1, <T,
2u,—-1  Ty<T, <T, (EE principle) (7.90)
Tn
T Ma T.<T,<T,
C
V0N T,>T,  (ED principle)
B = log(T,/T,)/log(T,/T,) (7.91)
T, = 1/33s, Ty = 1/8s (7.92)
T. = Corner period between the constant S, and the

constant S, regions
T. = Corner period between the constant Sy, and the
constant Sy, regions of the inelastic spectrum

Course “Fundamentals of Structural Dynamics”

An-Najah 2013

7 Seismic Excitation Page7-73

* Inelastic design spectra according to [NH82] (log. x-axis)

i Ta Tg Tc Tp Te  [Tg 7
2= — 1A= 1
- /0 HA=2 -
-/ 1 0\ 1 === MA=4 _
- L/ 0 |\ |- HA=6 _
S L |/ i
<4 L |
B \'\T: _____ . ""-‘AEq alldisplacement principle
L N N -
0 Ll Ll \\.:.'1.;.-':-}-'-'....._- -
0.01 0.10 1.00 10.00 100.0
I Ta Tg Tc Tp Te [T ]
2= ——— Up=T I
- -HpA=2 .
R Y :
ol T .
-Oc’ — -
%) 1=
i 7| Equal|displacement principle 7
- -t i
0 — Ll
0.01 1.00 10.00 100.0
Period [s]
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* Inelastic design spectra according to [NH82] (linear x-axis)

A [m/s?]

D [m]

5'0 :_ T TlBl T T|C| T T I T T T T I T T T T TlDl T T I T |C |= |50|/ T __
40ft -]
[ HA=1 ]
sobfl | N | HAfZ .
i N Ha=4 ]
R I N MA=6 ]
2.0 -'_" —
A —
NS . - \ N :
10 | N Tl .
0.0 1 oo | -.I~-I_-I—-I_-_|“-;I-__I-——IT_?_— :-|:-|: T —I__T__I-_T_—I =r=|_—1‘—:
0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.15 T T T T T T T T I T T T T I T T T T T T T T I T T T T I T
H TB TC TD C =5% -
0.10+ —
il MA=1 i
I st I‘LA:z i
oo5p-( |\ | _____ HA=4 —
I HA=6 7
000 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 1 1 1 I 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Period [s]
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* Ry-ua-T, relationships according to [VFF94]
In [VFF94] Ry-us-Ty, relationships are defined as follows:

co T
c(u— 1) " L+1 T,<T
Ry _ 1(HA TO 0 (7.93)
oy(y— D1 T,>T,
Where: Ty = ¢y WS- T, <T, (7.94)

T. = Corner period between the constant Sy, and the
constant S, regions

The parameters c,, c,, cg and c are defined as follows for 5%
damping:

Model
Hysteresis Damping Cy Cr Cy Cr
Q Mass 1.0 1.0 0.65 0.30
Q Tangent stiffness 0.75 1.0 0.65 0.30
Bilinear Mass 1.35 095 0.75 0.20
Bilinear Tangent stiffness 110 095 075 0.20

and where the Q-hysteretic rule is a stiffness degrading rule sim-
ilar to the Takeda-hysteretic rule presented in Section 7.3.2.

The table shows the dependency of the Ry-1s-Ty relationships
both on damping and hysteretic model.
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For the Q-hysteretic model and mass-proportional damping, the
Ry-1s-Ty relationships by [VFF94] specialise as:

Tn
_ (uA—l).T—Jrl T,<T,
y 0
YO T,>T,

(7.95)
(ED principle)

Where: T,

0.65-u3-T,<T, (7.96)

Corner period between the constant S,, and the
constant Sy, regions

—
I

The spectra depicted on the following pages correspond to this
case.
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* Inelastic design spectra according to [VFF94]

T T T T T T T T I T T T T I T T T T T T T T I T T T T I T
S0 Tg [T Tp {=5% ]
40 -]
[ Ha=1 ]
i N e “‘A=2 ]
g 3.0 i _____ MA=4 -
EdL - N | e Ha=6 1
< VARE i
20 | © —
RN ]
SRR )
1.0} S ]
00 L 1 1 1 1 1 1 1 1 I 1 I--;_-I_-I_-I_-I_-:I.:I. -—_ T_I-:——I-__-I:.I:-_ -_l;..';l;-;'_l'_.._'_-q--rl-.;
0.0 05 1.0 15 2.0 25 3.0
0-15 T T T T T T T T I T T T T I T T T T T T T T I T T T T I T
L Tg | Te Tp € =5%-
0.10}- .
E - -
5 i ]
0.05 “Ai1
N I AR LR AR HA—Z i
————— HA=4
----- HA=E -
0-00 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 1 1 1 I 1
0.0 1.0 1.5 2.0 25 3.0
Period [s]
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* The spectra according to [VFF94] will be used (see Section 7.7.1)
» Example 1: SDOF system with T,=0.9 s

* Inelastic design spectra in ADRS-format 7.7.2 Determining the response of an inelastic SDOF sys-
—————— tem by means of inelastic design spectra in ADRS-
5.0 —
0T T i format
;( B C C = 5% 1
40 B In this section the response of two example inelastic SDOF sys-
' [NH82] 1 tems is determined by means of inelastic design spectra in
ua=1 1 ADRS-format.
&30 /N i =2 .
e HA_4 ] + SDOF system 1 with T,=0.9 s
S et NO e A=4 . _ _
N N 1)\=6 - SDOF system 2 with T, =0.3 s

—
O

» Response of the elastic SDOF system 1:

___________ LM fs A
P e St NP O—]]—l properties:
0.06 0.08 0.10 0.12
SqIm! C  m=100t
R L e
E f, =80 kN
{=5% ] K k, = 4874 kN/m ¥
] u, = 0.016 m
B k=0 kN/m
] y Yy 1 1
_ MA=1 ] {=5% ( i Ko /é
N‘\é ---------- MA=2 _— — o H u
T Hos SN T MA=4 ] i uy Unm
P ook N/ TN~ T HA=6 ]

—
O

Tn=2nfﬁ=2n/ﬂ=0,9s
k 1874

""'--—_-—‘-:.:.Z.‘_.‘_.‘_.‘_‘.:.:.:.:.:.-_.-_. Spa = 2.62m/s?
: Sy = 0.054m
Sq(m] f, = 261.7kN

7 Seismic Excitation Page7-79 7 Seismic Excitation Page 7-80



Course “Fundamentals of Structural Dynamics” An-Najah 2013

* Response of the inelastic SDOF system 1:
= _ 0.0
R, = T 20 3.27
My = Ry =327 (From Equation (7.95) since T >T_ = 0.5s)
U, = U,y = 0.016-327 = 0.054m = S,

m

Representation of the inelastic SDOF system 1 in the inelastic
design spectrum in ADRS-format:

5.0
Hp =1

4.0

T,=09s
Performance point

1.0

LI I LI I T T T I

00 1 1 1
0.00 0.02 0.04 0.06 0.08 0.10 0.12

* If the force-deformation relationship of the inelastic SDOF system
is divided by its mass m, the “capacity curve” is obtained, which
can be plotted on top of the spectrum in ADRS-format.

» The capacity curve and the inelastic spectrum intersect in the “per-
formance point”.
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« Example 2: SDOF system with T,=0.3 s

i m fs
Oﬂ]_l properties:
f,. = 120 kN
Cc m =100t uy, =0.0027 m
K ke, = 43865 kN/m f,, =300 kN
uyp, = 0.0068 m
Ko = 0 KN/m ;
y |77 1 k !
{=5% . " /
I - ! > u
i Uy Un

» Response of the elastic SDOF system 2

Tn=2nﬁ=2n/ﬂ=o.3s
k 13865

Spa = 4.71m/s?
Sy = 0.011m
£, = 471kN

In this second example two different inelastic SDOF systems will
be considered: (a) A SDOF system with a rather low f, and (b) a
SDOF system with a rather high f,.

» Response of the second inelastic SDOF system 2a

fel 471
Ry = f_y =10 3.93
In this case the resulting displacement ductility u, is so large, that
Equation (7.96) T, = T, = 0.5s results. After rearranging Equa-
tion (7.95), the displacement ductility u, can be computed as:
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L= (R 1) 41 = 393 1)- 2341 = 588
A y T, 0.3

Check that T, > T_:

T, = 0.65-uy" - T, = 0.65-5.88°7-05 = 0.553s> T,

C

The maximum displacement response is therefore:
u, = u,- M, = 0.0027-5.88 = 0.016m>S,

m y

Representation of the inelastic SDOF system 2a in the inelastic
design spectrum in ADRS-format:

T
T,=0.3s

5.0

4.0

Performance point

& 3.0
» |
E |
o L
2.0
C o Capacity curve Hp =1
1or U7-=.0.016m
e HA=5.88
ool v vl T L
0.00 0.02 0.04 0.06 0.08 0.10 0.12
S, [m]

* Note that the line (*) is no longer vertical as in Example 1, but in-
clined according to the equation n, = (Ry=1) - (T,/Ty) + 1.
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Now consider the SDOF system 2b:
* Response of the inelastic SDOF system 2b

f 471
R =8 =2C -,
Y f, 300 37

In this case the displacement ductility u, will be such that Equation
(7.96) yields T, < T, = 0.5s. To compute u, insert therefore Equa-
tion (7.96) in Equation (7.95). This results in following expression:

n

0.65-u

+1 =R (7.97)

(Hy= D) 0.3 y
A

T

C

Equation (7.97) needs to be solved numerically.
UA(T, = 03,T, = O.S,Ry = 1.57) = 1.73
Check that T, < T_:

T, = 0.65-py - T, = 0.65-1.73°7-05 = 0383s< T,

0.3
0383 1 1.57 Ry

TI‘l
(My—1)-=+1=(173-1)
T0
The maximum displacement response is therefore:

Uy, = Uy -ty = 0.0068 - 1.73 = 0.012m > S,
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Representation of the inelastic SDOF system 2b in the inelastic
design spectrum in ADRS-format:

T
T,=0.3s

5.0

“Performance Point

4.0 Capacity curve

[m/s?]

pa

S

2.0

LI I T 171 |'-|..|.'

1.0

[
3
|
(@)
Q
SN
3
IIIIIIIIIIIIIIIIIIIIIIIII

b.OO 0.02 0.04 0.06 0.08 0.10 0.12
S, [m]

* Note that the curve (*) is no longer a straight line as in Examples
1 and 2a.

* In Example 2b the curve (*) needs to be computed numerically.

* In Example 2a the curve (*) is only an approximation of the curve
(*) in Example 2b. As soon as T, = T, both curves are identical.
In Example 2 this is the case if S, < 1.6m/s?.

* When T,<T, (ie. when S, > 1.6m/s%) the curve (*)2a predicts
larger maximum displacements u,, than curve (*)2b. The differ-
ence is, however, small. For this reason, in most cases Equation
(7.95) can be approximated as:
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Tn
)= (HA*U‘T_C+1 T,=T, (7.98)

[V T >T (ED principle)

n C

This approximation is particularly satisfactory, if the large uncer-
tainties associated with smoothed spectra are considered.

« Comments
» A discussion of similar examples can be found in [Faj99].

» For computing the response of inelastic SDOF systems by means
of inelastic design spectra, the Ry-u,-Ty, relationships in Section
7.7.1 are sufficient. The spectra in ADRS-format are not absolutely
necessary, but they illustrate the maximum response of inelastic
SDOF systems very well.

* Ry-1a-Ty, relationships should only be used in conjunction with
smoothed spectra. They should not be used to derive the inelastic
response spectra of a single ground motion

« Remember:

- Design spectra are very useful tools to design structures for the expected
seismic demand. Design spectra represent the average effect of an
earthquake with design intensity.

- If a single earthquake is considered, the spectra may underestimate the
seismic demand for a certain period range (... overestimate ...).

- This characteristic of design spectra should be considered when design-
ing structures: The seismic design should aim at structures that are as
robust as possible.
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7.7.3 Inelastic design spectra: An important note

The “equal displacement” and the “equal energy”
principles represent a strong simplification of the real
inelastic behaviour of SDOF systems.

* Design spectra are a powerful tool to design structures to resist
the expected seismic action. On average, design spectra are
a good representation of the expected peak behaviour of struc-
tures.

* However, if single ground motions are considered, then it can
easily be the case that design spectra significantly underesti-
mate the expected peak behaviour of structures.

* This characteristic of the design spectra shall be taken into ac-
count during design by aiming at robust structures.
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7.7.4 Behaviour factor q according to SIA 261

—-——0>U fs A

f

el

Elastic demand due
to seismic action

q= q)oRy
fy’eff = fy, g Qo=Ff/Ryt————- Expected behavior
_ | Design value of the
fy’d fe/a | strength
|
|
@ = Overstrength |
| u
—— liy uelz Um -
» Design spectra according to SIA 261
4 T A R R | T MM T
- Ground Class B Tg Tc Tp

SEMS
N

IIIWIII'IIII'II

Elastic design
spectrum

Period [s]
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7.8 Linear equivalent SDOF system (SDOF,)

£, _-migt) f,

-

Elastic
(with elastic stiffness k)

Elastic
(with ,,effective stiffness“

f or ,,secant stiffness“ k)
. . m
! f 1

1 .

! y 1 Inelastic
! i
[ i
i —p U
[ [ uy Un

It is postulated that the maximum response u_, of an inelastic
SDOF system can be estimated by means of a linear equivalent
SDOF system (SDOF). The properties of the SDOF are:

Stiffness: Koge = £,/0,, (7.99)

Damping: Ce (7.100)
The differential equation of the SDOF, is:

ii(1) + 28, 0(t) + ©2u(t) = —ii (1) With ©; = kg/m (7.101)

The question is how the viscous damping (, of the SDOF, can
be determined so that max(u(t)) = u,,.
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» Example: Inelastic SDOF system with Takeda-hyst. rule [TNS70]
The properties of the inelastic SDOF system are:

* Damping: € = 5% (constant, proportional to k)

* Mass: m = 100t

- Stiffness: k. = 4874kN/m

* Yield force: fy = 80kN

* Hysteresis: Takeda-hysteresis withr, = 0.05, o = 0.5, = 0.0

fsp &

ki =k, (max{uy})

kK, = kg (max{u;})

BE, | BE,
1

=V

+ +
Urev Haly

The maximum response of the SDOF system when subjected to the NS-
component of the 1940 El Centro Earthquake is:
X, = 0.073m , f = 93.0kN

> 'm

The properties of the corresponding SDOF,, are:

fn 930 kN B m 100
Kogp = = 5073 1274°=, T, = 2m /gf = 2n /—1274 = 1.76s

C. = 22.89%, the viscous damping {_ was determined iteratively!
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Comparison between inelastic SDOF and SDOF,

100 —r r [ r 1 11 r 1t 1111
[ £=5%
[ (e =22.89%

50

Force [kN]
o

Inelastic SDOF
.......... Equivalent SDOF

_1 00 i 111 1 I 1 1 1 I 1 1 1 I 1 1 1 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1
-0.08 u -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08
m Deformation [m]

)
o
T T T [ 1 1 11

R

(0001 L L L L L B L L L L BRI
C {=5%
0.06 |-
C Ce = 22.89%
0.04fF i

0.02

0.00 [ f

|

-

-0.02

Deformation [m]
* LD
—

-0.04F
oosh Inelastic SDOF
I U, Equivalent SDOF 1
'0.08 C I_ I_I_I _I '_I _I 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 ]
0 5 10 15 20 25 30 35 40
Time [s]
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Comments regarding the example:

+ The damping C, is in general larger than the damping (, since (,
of the SDOF, needs to compensate for the hysteretic energy ab-
sorption of the inelastic SDOF system.

* However, in rare cases it happens that {_ < {. This shows again
the difficulties that are associated with the prediction of the seismic
response of inelastic SDOF systems.

* In the example, the viscous damping {_. was determined iteratively
until a value for {, was found for which the response of the SDOF,
system was equal to the maximum response of the inelastic SDOF
system. Hence, if a method was available for estimating the vis-
cous damping (., then the maximum response of the inelastic
SDOF system could indeed be estimated by means of the linear
equivalent SDOF system.

* The stiffness k¢ and the period T, of the SDOF, system are only
known once the maximum response of the inelastic SDOF system
are known. Section 7.8.2 shows how the equivalent viscous damp-
ing {, can be estimated without knowing the stiffness k ¢ and the
period T, of the SDOF system a priori.

- Estimating the damping C,

In particular in the sixties significant research has been dedicated to es-
timating the damping {, (see for example [Jac60], [Jen68] and [IG79]).
At that time the interest in linear equivalent systems was big because the
numerical computation of the response of inelastic systems was ex-
tremely expensive. The basic idea behind estimating the damping C,
was:

The inelastic SDOF system dissipates energy due to { and due to the
inelastic deformations, which are a function of its inelastic force-defor-
mation relationship. The equivalent SDOF system, however, dissipates
energy solely due to its viscous damping. For this reason the following
relationship applies:
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Ce = 0+ 8 (7.102)

where C__ is the viscous damping equivalent to the hysteretic energy ab-
sorption of the inelastic system.

The simplest method for estimating the equivalent viscous damping is to
assume that the inelastic system and the linear equivalent system dissi-
pate the same energy within one displacement cycle. According to this
assumption [Cho11] defines the equivalent elastic damping as:

Ceq = 12 (7.103)

A, : Energy dissipated by the inelastic SDOF system due to the ine-
lastic deformation of the system. The dissipated energy corre-
sponds to the area of the force-displacement hysteresis of the
considered displacement cycle;

A : Potential energy of the equivalent SDOF system at maximum dis-

placement:
2
A = keff' U
€ 2

The inelastic force-deformation relationship of many structural RC ele-
ments can be described by the “Takeda’-hysteresis rule. According to
Equation (7.103) the equivalent viscous damping of this hysteresis rule
is:

1 (fm+f0)|,tAu +fiu, —fu, - (f, +1)u,

Ceqrak = 75 CRTRYZ (7.104)
Where:
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f =[l+r(uy—1)]-f
a m A
fs u By o (l_r").f y
- 0 o y
1ok u,
0= u tuy, 2
1 3
= [1+r, (- D -P)I- £,
> u = HAu u,
Lry(ay = 1)
U = —0 y
Ha

uy = [y By~ DI v,

The equivalent viscous damping of other important hysteresis rules is:

1o=0

Elasto-plastic (EP) rule: Y
kg
_ 2 uA 1 / K
Ceq EP T 1y (7 105) / / U /k Hally
/ 1
/

Bilinear (BL) rule: —
2 My D -1y

,.I//
eq.BL = n HA(THroy—1)) o LJ o

Rule according to Clough (Clo) [CP75]:

Ceq,Cloz—'——.m 7107
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Ceq-uA-reIationship for these important hysteresis rules:

CRam
60 Elasto-plastic -
50;— CIough_;
T a0F —
S F Bilinear (r,=5%)1
Fao Bilinear (r,=20%) °
20;— ‘:;
10F Takeda (0=0.5, p=0.0, r,=5%) E
- S S R

5
Ha [-]

The next figure compares the theoretical value for (, for the Takeda-SDOF
(Equ. (7.104), r,=0.05, 0=0.5, f=0) with the computed value (for El Centro):

50 T T T T T T T T T T T T —
i 11 = Theory (Eq. (3.46)) L
1obx—=T =4.00s o
40 [ o—o T =2.00s J:|'~.
L OFa—a Tn=1 .33s :
gl-=—aT =1.00s /
L : KoM Tn=0_67s |:| ....“ “!
_ 30 r = "o T =0.50s ..:..;:‘ .
oo 2 pfa-aT=033s o ALY T
® ® |@-aT=025s ; &
s <4 5F " R -
20 — j_ 4 | 6 ‘.‘.‘ |
[ 3k 7 ' i
10 O 2L —
i 1 -
oL 0 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8
HA target [-] HA target [-]
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Comments regarding the comparison of the theoretical value with the
computed value of {_ for the Takeda-SDOF system when excited by the
El Centro earthquake:

+ The computed value of {, was determined iteratively. Eight differ-
ent inelastic SDOF systems with different periods T, were consid-
ered. The strength of each inelastic SDOF system was varied in
such a way that seven different displacement ductilities resulted
(ny=2to 8).

* The results show that {, is not only dependent on p, but also on
the period T, of the SDOF system. This effect is not considered by
Equations (7.103) and (7.104), respectively.

* In some cases the difference between the theoretical value and
the computed vale for {_ is considerable. For this reason there are
also considerable differences between u, ... (target ductility)
and Wy .. (@ctual ductility obtained from the time-history analy-
sis of the SDOF, system with the viscous damping . according to
Equation (7.104)).

» Typically these differences increase as the target ductility increas-
es.

« Similar observations were made when the computation of the ine-
lastic spectra was discussed.

» This shows again the difficulties associated with the prediction of
the seismic response of inelastic SDOF system.

* Improved estimate for ¢,

Over the last years some researchers suggested improved formulas for {_ by
carrying out statistical analyses of time-history responses of inelastic SDOF
systems (see [PCKO7]). [GBPO05] suggest for example the Equation (7.108).

1 1
. =C+C, where: (. = a[l - ——)(1 + ——-——-—J (7.108)
! ! w2V (T 4 o)
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The constants a to d are:

3)

4)

uy Hatly Ty u Uy Hally
Kpa™ ~
//
~ “')t
[-=5

Hysteresis rule a b c d

1) Elasto-Plastic (EPP) 0.224 0.336 -0.002 0.250
2) Bilinear, r,=0.2 (BI) 0.262 0.655 0.813 4.890
3) Takeda Thin (TT) 0.215 0.642 0.824 6.444
4) Takeda Fat (TF) 0.305 0.492 0.790 4.463
5) Ramberg-Osgood (RO) 0.289 0.622 0.856 6.460
6) “Flag-Shaped”, B=0.35 (FS) 0.251 0.148 3.015 0.511

from [GBPO05]

The hysteresis rules 1) to 6) were chosen because they can be used to
represent the hysteretic behaviour of typical structural types:

Elasto-Plastic (EPP): Hysteretic rule that characterises systems
for the seismic isolation of structures (sliding systems that are
based on friction).

Bilinear, ry,=0.2 (Bl): Hysteretic rule that also characterises sys-
tems for the seismic isolation of structures. The value of the post-
yield stiffness rokp may vary significantly between different sys-
tems.
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Takeda Thin (TT): Hysteretic rule that characterises RC struc-
tures which lateral stiffness is provided by walls and columns.
Takeda Fat (TF): Hysteretic rule that characterises RC structures
which lateral stiffness is provided by frames.

Ramberg-Osgood (RO): Hysteretic rule that characterises ductile
steel structures.

“Flag-Shaped”, =0.35 (FS): Hysteretic rule that characterises
prestressed structures with unbonded tendons.

C.,-15-relationships for the most important hysteresis rules according to
[GBPO5]:

20 7 LI L L EL L L L | A

[ «— 1)EPP B =

[ o— 2)BL(r=0.2) o Al ]

15— a—= 3)Takeda Thin =

[ x-...x 4)Takeda Fat ]

: [ oo o 5) ]
o100 Ay A 6) —]
()] - .
oL 0 4
5 ;

ol v R B
0 1 5 6

Important comments:

With these relationships an in a statistical sense improved esti-
mate of the damping (, is obtained.

For single systems subjected to a specific ground motion differenc-
es between the maximum response of the inelastic system and the
maximum response of the equivalent SDOF with {_ according to
these improved Ceq-uA-reIationships can still be significant!
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7.8.1 Elastic design spectra for high damping values

To compute the response of the equivalent SDOF systems, elas-
tic design spectra can be used.

The damping values of equivalent SDOF systems are in gener-
al larger than the typical 5%. For this reason the design spectra
needs to be computed for higher damping values.

The design spectra for higher values of damping are often ob-
tained by multiplying the design spectra for 5% damping with a
correction factor n:

Spa(T:d) = M- S (T,.0 = 5%) (7.109)

The literature provides different estimates for this correction fac-
tor n. Two of these are:

- 1.5

. — < <
[TF99]: n T 10 where 0.05<(<0.5 (7.110)
1
. = - <(C<L
[BE99]: 057108 where 0.05<(<0.3 (7.111)

Equation (7.111) corresponds to Equation (29) in the Swiss
Code SIA 261 [SIAO3].

The correction factors n obtained with Equ.s (7.110) and (7.111)
are plotted for different damping values C in the next figure:
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o
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o
o
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Comments:

» A discussion of the different approaches for computing the design
spectra for high values of damping can be found in [PCKO07].

» Equations (7.110) and (7.111) were derived for ground motions
without near-field effects.

» Equations (7.110) and (7.111) were derived from the statistical
analysis of several response spectra for different ground motions.
For this reason Equ.s (7.110) and (7.111) should only be used in
conjunction with smoothed response or design spectra.

» As for all statistical analyses the resulting design spectra corre-
spond only in average with the true highly damped spectral ordi-
nates. For single periods and ground motions the differences
between the highly damped spectral ordinates obtained by Equ.s
(7.110)/(7.111) and by time-history analyses of SDOF systems can
be significant.
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« Elastic design spectra according to [BE99]

S0 Mg [ Tg D B
F {=5% ]
4.0_— 10% n
« 30H]20% -
£ [/ 30% )
< ]
2.0 ]
0.0 0.5 1.0 1.5 2.0 2.5 3.0
(T I L L L L B L L B L BN B
- Ts | Tc To T
I £=5%]
0.10_— 10%__
T T 20% A
a B 30% T
0.05F —
000_) 1 1 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 1 1 1 I I_
0.0 0.5 1.0 1.5 2.0 25 3.0
Period [s]
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» Elastic design spectra in ADRS-format

T T -II-CI T T T

—
O

1 I 1 1 I I 1
0.00 0.02 0.04 0.06 0.08 0.10 0.12
s, [m]
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7.8.2 Determining the response of inelastic SDOF systems
by means of a linear equivalent SDOF system and
elastic design spectra with high damping

The computation of the seismic response of inelastic systems by
means of linear equivalent systems was studied by Sozen and
his co-workers in the seventies (see for example [GS74], [SS76]
and [SS81]).

Today this approach gains new attention since the “Direct Dis-
placement-Based Design (DDBD)” approach, which was devel-
oped by Priestley and his co-workers, is based on the idea of the
linear equivalent system ([PCKO07]).

This sections outlines the procedure for computing the response
of an inelastic SDOF system by means of an linear equivalent
SDOF system and elastic design spectra with high damping.

» Example: SDOF system with T,=0.9 s

i m f;
Oﬂ]_l Properties: Takeda hysteresis
=0.5, p=0.0, r,=0.05
C  m=100t (0=0.5, B=0.0, r=0.05)
f, =80 kN
K ke = 4874 KN/m
u,=0.016 m
Ko =244 kKN/m .
C =5% ky ! '
— - : u
i Uy Un

For the example the spectra according to [BE99] will be used (Section 7.8.1).
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» Response of the elastic SDOF system

Tn=2nJ§=2n/—@-=o.9s
k 1874

Spa = 2.62m/s?
Sy = 0.054m
» Response of the inelastic SDOF system

The maximum response of the inelastic SDOF system will be com-
puted by means of the ADRS-spectra (page 7-106).

Step 1: The capacity curve of the SDOF system is plotted on top
of the ADRS spectra.

Step 2: By means of Equ.s (7.102) and (7.104) the nonlinear
scale, which represents the damping {_ as a function of the maxi-
mum response of the SDOF system, is plotted along the capacity
curve.

Step 3: Several spectra for different values of damping are plotted.

Step 4: The “Performance Point” is the point where the spectrum
with damping . intersects the capacity curve at the same value of

o
For the considered example the maxmimum response of the ine-
lastic SDOF system is:

Sy = 0.065m

Comments regarding the example:
» To determine the “Performance Point” exactly, an iterativ approach
is typically required.
* The linear equivalent SDOF system is fully defined by the period

T, and the damping (.. The period T, results from the slope of the
line that connects the origin with the “Performance Point”.
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* The damping values Ceq used in the figures on page 7-106 were
determined according to Equation (7.104). In the figures on page
7-107 the damping Ceq was determined using Equation (7.108).
The difference is, however, rather small.

* It should be noted that in both cases the computed maximum re-
sponse of the inelastic SDOF system does not comply with the
“equal displacement principle”.

* The linear equivalent SDOF system leads often to results that do
not agree with the “equal displacement principle”. This applies in
particular to SDOF systems with long periods or systems with
large ductility demands.

» A second example is presented on page 7-107. It is a SDOF sys-
tem with a shorter period and a smaller ductility demand than in
Example 1. In this second example the “equal displacement prin-
ciple” is approximately confirmed.
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Determining the SDOF behaviour by means of elastic ADRS-spectra

¢ =18.5%

Performance point

Capacity curve

Ce=5% | L s
10% 15%

Lo = 18.5%
]

0.06
8, [m]

1 I 1 1 I 1
0.02 0.04

o
°5
ONKT T TT
o

Alternative representation:

=5%

5.0

4.0

Performance point

g sofe
£ B
ok

20

r Te =1.67s
1.0f L

- o :

N R IR | lp =i3.98 —> (o= 18.5%
0.0 [ EE R
0.00 0.02 0.04 0.06 0.08 0.10 0.12

uy = 0.016m S, [m] uy, =0.065m
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Recalculate the example with Ceq according to [GBPO05]:

5.0 _—C = 5%

4.0

T 30 ]
£ ]
o ]
2.0 .
1.0 ., - g _
R Uy =407 —> (= 17.8% ]
0.0 |||| 1 1 1 | 1 1 1 | L 1 | 1 1 1 | 1 1 1 | 1 7
0.00 0.02 0.04 0.06 0.08 0.10 0.12
uy =0.016m SyImupy, = 0.067m
Second example with smaller ductility demand:
50 _C' ='5% I L L
- Performance point ]
4.0 _ .
gz128%  RInTOO% ]
& 3.0?— -
£k To =0.88s ]
? 20F I H
1.0:— T , —
/T M =1.97 — (o= 12.8% )
00 _l 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 | 1 | 1 1 1 | 1 7
0.00 .02 0.0 0.06 0.08 0.10 0.12
Uy =0.03m  up=0.039m s, my
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8 Multi Degree of Freedom Systems

8.1 Formulation of the equation of motion

8.1.1 Equilibrium formulation

. (1)
Cyy ::l myii, E ::l myi, ]_D
a4 f,() G— £5(t)
ky
Ko (up-uy)

{mlﬁl tepu tkyuy = £(t) +cy(iy —1y) tky(uy —uy) (8.1)
myli; +¢y(0y —1uy) +ky(uy, —uy) = £5(1) .

my Uy + (¢ +¢cy)uy —cyu, + (k) Hky)uy —kyuy = (1) (8.2)
m,li, — Cyu; + ¢yu, —kyu; +kyu, = (1) ’

m; 0 ||, + (cy +¢y) —¢of |0y + (ky ko) ey 1wy = f O (8.3)
0 m,| |, —C, Cy | |uy -k, ks || F10)

Mii + Cu + Ku = f(t) (8.4)
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8.1.2 Stiffness formulation

m,
——

ky/2 ky/2 The degrees of freedoms are

m, the horizontal displacements
[ > Uy, and u, at the level of the

masses m; and m,
k,/2 ky/2

g —————
| Lo at . @ 4,0 a
i S ‘4

» Stiffness matrix

K = Ky k| |k +ky) —ky (8.5)
k21 k22 _k2 k2
Unit displacement u; = 1 Unit displacement u, = 1
u = 1
F,=ky
u = 0 I »
F,=k
Reaction e,
location "2"
n = 1
. > u=0 ¢
Action Fi=ky Fi=kp,
location "1"
Reqction location "1" f
Alction location "2"—
8 Multi Degree of Freedom Systems Page 8-2



Course “Fundamentals of Structural Dynamics”

An-Najah 2013

 Mass matrix M

M - [ml 0} (8.6)
0 m,
* Equation of motion
m; 0| N (k; +ky) k| |u, _ |0 (8.7)
0 m,| (i, -k, k, [|u, 0
Mii +Ku = 0 (8.8)
8.1.3 Flexibility formulation
EI mL/3 mL/3
?111 ?uz
L/3 | L3 | L/3
L
* Flexibility matrix D
L
| S - S .
lF=1 [
.u.\\\\\\\\\\‘\‘ LA //////////A
8 Multi Degree of Freedom Systems Page 8-3
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By means of the principle of virtual forces the vertical displace-
ment A at location d due to a unit force F = 1 acting at location
a can be readily determined.

ALS) = —ad(a2 + 82— 1) - 1;—5 with o = & and 5 - 4 (8.9)

The flexibilty matrix consists of the following elemnts:
u = DF (8.10)

-4l
) dy; dyy| |Fy

The dij factors can be computed by means of Equation (8.9) as

dy = A1/32/3) = 5B (8.12)
d,, = AQ/32/3) = 4& Ié—i (8.13)
dy = A1/31/3) = B (8.14)
Gy = AQ/31/3) = 5 B (8.15)

and the flexibilty matrix D becomes:

L3 (87
D=——. 8.16
486EI |:7 8j| ( )
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» Stiffness matrix K
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_p! - 162 EI 18 -7
K=D 5 D3 {_7 8} (8.17)
* Mass matrix M
M = [ml 0} (8.18)
0 m,
» Equation of motion
m; 0|1, +@E & =741 _ |0 (8.19)
0 myllii,] > L* |-7 8|u,| |0
Mii + Ku = 0 (8.20)
8.1.4 Principle of virtual work
» See e.g. [Hum12]
8.1.5 Energie formulation
» See e.g. [Hum12]
8 Multi Degree of Freedom Systems Page 8-5

8.1.6 “Direct Stiffness Method”

 Stiffness matrix of a beam element

Us
U U \/dué Uy

J L

|

The stiffness matrix K of a beam element with constant flexural

and axial stiffness is well known:

F = Ku
[ EA EA
A 0o =& 9
L L
T 12EI  6EI 12EI
i ° T 1z E
"2 6EI 4EI Gl
F; _ L2 L L2
Fy| | _EA EA
. =0 0 = 0
5
12EI 6EI 12EI
el o Y 5
6EI 2EI 6EI
i " = T " T

6EI
L2

2E1
L

0
6EI
L

4E1
L

(8.21)

(8.22)

If the axial elongation of the beam is not considered, the matrix

can be further simplified as follows:
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U

El
U

éz
|

Uy
J L
12 6L —-12 6L
2 2
K = El. | 6L 4L% —6L 2L (8.23)

L3 |_12 _6L 12 —6L
6L 2L2 —6L 4L2

» Example: Cantilever

g mL2 %“1
i,

L2 |

g mL/A %‘13
A

L/2

Uy

L4

L

Assemblage of the stiffness matrix

F| 12+12 —6L+6L —12 6L uy
Fol _ El |—6L+6L 4L2+4L%2 —6L 22 | W (8.24)
F,| L’ ~12 6L 12 6L u,
F, 6L 2L 6L 412 u,
with L = L/2
8 Multi Degree of Freedom Systems Page 8-7
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Equation of motion:

mL 0 0 0] [i 24 0 —12 6L | |W 0
00 0_ 01 i, LEL | 0 8L?-6L 2L2| |Y| _ |0 (8.25)
0 0 %I: 0 Ui, L3 |_12 6T 12 —6L u3 0
0 0 0 ol [ 6L 202 —6L 4L2%| |u,| (O
mL 000 Jii, 24 -12 0 6L| |W 0
mL .e b —
0 ko o i +% -12 12 —6L —6L| || _ |0| (g 2g)
i AT QT2 H72 u 0
0 0 0 o0f |2 R I
o o o ol [ 6L 6L 202 4L |u,| L0
Static condensation:
mL 0 ;0 0| [u ! L
m ! U 24 12, 0 6L | |% 0
mL . I — —
0 > : 0 0 _113_ + Ef_i _—_12_ _12:|:6__L_—6:L_ . _113_ = .0. (827)
55155 (B L° 1o —6L:8L2 202 |uy| |0
o o0'o ol li 6L —6L,2L2 4L2| |u,] L0
m,, 0} | g n Kee Keo| || _ [0 (8.28)
L0 0] [ug| [Ko¢ Koo| |Ug 0
8 Multi Degree of Freedom Systems Page8-8
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(8.29)

{mttut +tKkyug+keguy = 0

Koeue t Kgouyg = 0

From the second row of Equation (8.29) the following expression
can be derived:

uy = —KggKoeu, (8.30)

Substituting Equation (8.30) in the first line of Equation (8.29) we
obtain:

m, i, + K, — kogkggKgu, = 0 (8.31)

m, i, + (kg — kogkggKg)u, = 0 (8.32)
and with k,, = ky,:

m,ii, + (K, — Ko KggKo)u, = 0 (8.33)

m,,ii, + K, = 0 with K, = Ky, — Ko Kgokoq (8.34)

Where k,, is the condensed stiffness matrix, and in our case it is
equal to:

1 1
P _EL {24 —12} 0 6C| | 702 1402 |0 —6L
tt = _ _ _ _
L3 ||-12 12] |6C—6f| | 1 2 | |6L —6L
1412 7L?
(8.35)
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i - E1 o

« =503 Ei j (8.36)

after substituting L = L/2:

~ EI 48 -
ke = 5% Eg j (8.37)

The final equation of motion of the cantilever is therefore:

mL

0 ..
2 . i +E_§4_8 16 -5 . i — 0 (838)
mL| |is] L° 7 |-5 2] |uy| |0
0 ——
4
* Notes

* The “Direct Stiffness Method” is often used in the Finite Element
Method.

» The derivation of the stiffness matrix K for a beam element and in-
structions for assembling the stiffness matrix of entire structures
can be found e.g. in the following references:

[Prz85] Przemieniecki J.S.: “Theory of Matrix Structural Analy-
sis”. Dover Publications, New York 1985.

[Bat96] Bathe K-J.: “Finite Element Procedures”. Prentice Hall,
Upper Saddle River, 1996.
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8.1.7 Change of degrees of freedom

The equation of motion for free vibration of the 2-DoF system de-
picted in the following can be immediately set up if the DoFs u,
and 0, are considered.

4 onmsl—

Using Equation (8.23), the equation of motion for free vibrations
of the system becomes

m

R Y - H (8.39)
mL°| |6, L7 |-eL 4L [6] [0

" T

8 Multi Degree of Freedom Systems Page 8-11
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or:

0} (8.40)
0

e

As an alternative, the motion of the system can be also expressed
in terms of the DoFs u, and u,. To this purpose, the relationship
between the two sets of DoFs can be immediately written as:

L (8.41)
2

which in matricial form yields the following system of equations:

Slo L0 M org = Au (8.42)
0, 02/L |u,
%/_/
A

The matrix A is called coordinate transformation matrix and can
be used to transform the mass matrix, the stiffness matrix and
the load vector from one set of DoF to the other, i.e.

K = A'KA (8.43)

M = A'MA (8.44)
T_

F=AF (8.45)
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For the example at hand, the stiffness matrix K expressed in the
set of DoFs u; and u, becomes:

K=ATKA =1 0 E—i 2 -6L1 110 (8.46)
02/L| L° |_gL 4L? |02/L
_EI |12 12 (8.47)
L3 |-12 16 '

while the mass matrix M becomes:

3m
M=ATMA=|! O] |2 10 (8.48)
02/L mL% 102/L
0 i
8
%—I—l 0
M = (8.49)
m
)

which yields the equation of motion of the 2-DoF systems ex-
pressed in terms of the DoFs u, and u,

3m g1

2 . ul _}_E_i' 12 —12 . ul — 0 (850)
m| |i,| L7 |-12 16] |u, 0

03

8 Multi Degree of Freedom Systems Page 8-13
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8.1.8 Systems incorporating rigid elements with distribut-
ed mass

The 2-DoF system depicted in the following incorporates a rigid
element with distributed mass p.

>— u2 — 3 M
my myy @
]
Resultant S F——+
O [ S uL/2
El=« uL/2 «Q
g e i Resultant =
u —
1 my H m? "
Inertia Inertia
— El forces forceS
& eta— Inertia forces and Inertia forces and
reactions for reactions for
2-DoF system ;=1 and 1i,=0 ;=0 and ti,=1

The elements of the 2x2 mass matrix can be determined by
imparting a unit acceleration ii;=1 to one degree of freedom
while keeping the acceleration of the other degree of free-
dom equal to zero (ii,=0).

The resulting inertia forces are then applied as static forces
acting onto the system, and the elements of the mass matrix
are computed as the reactions to these static forces.
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In the example at hand, if the DoFs u, and u, are considered, g
the elements of the mass matrix can be easily computed as fol- mL 121 % +E- 28 10| \!1f ~ |0 (8.57)
lows: 6 12 |ip| L® [-10 4 u, 0
2
1
1
2
my, = gML (854)

Hence the mass matrix becomes:

M=E:Fq (8.55)
6 |12

Due to the fact that the mass is distributed, off-diagonal terms
are present and therefore the mass matrix is coupled.

The stiffness matrix of the 2-DoF system can be easily computed
by means of the methods discussed so far as:

K:%.%—N (8.56)
L [-10 4

and the equation of motion of the system for free vibration be-
comes:
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9 Free Vibrations

9.1 Natural vibrations

Mii +Ku = 0 (9.1)
Ansatz:
u(t) = q,(t)¢, where q,(t) = A cos(m,t) + B, sin(o,t) (9.2)

The double derivation of Equation (9.2) yields:
d,(1) = ~@L[A,cos(w,t) + Bysin(w,0)] = ~05q,() (9.3)
ii(t) = —0;q,(D0, (9:4)
and by substituting Equations (9.2) and (9.4) in (9.1) we obtain:
[~ 0,M0, + Ko,lq,(t) = 0 (9.5)

Equation (9.5) is satisfied if q,(t) = 0, which is a trivial solution
meaning that there is no movement, because u(t) = q,(t)¢, = 0.
To obtain a nontrivial solution the term in brackets in Equation
(9.5) must be equal to zero, i.e.:

[- oM +Klp, = 0 (9.6)
or:

Ao, = 0 with A = —0'M+K (9.7)

9 Free Vibrations Page 9-1
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Also in the case of Equation (9.7), there is always the trivial so-
lution ¢,, = 0, which corresponds to an absence of movement.

If the matrix A has an inverse A", then Equation (9.7) can be
rearranged as follows:

A'ag, = A0 (9.8)
and therefore
0, = 0 (9.9)

This means that if matrix A has an inverse A™', then Equations (9.6)
and (9.7) have only the trivial solution given by Equation (9.9).

The inverse of Matrix A has the form:

-1 17
A = —A 9.10

If the determinant |A| is equal to zero, then the matrix is singular
and has no inverse.

Therefore, Equation (9.6) has a nontrivial solution only if:
—o:M+K| =0 (9.11)

The determinant yields a polynomial of order N in mfl which is
called characteristic equation. The N roots of the characteris-
tic equation are called eigenvalues and allow the calculation of
the N natural circular frequencies o, of the system.
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As soon as the natural circular frequencies o, are computed,
also the vectors ¢, can be computed within a multiplicative con-
stant by means of Equation (9.6). There are N independent Vec-
tors which are called eigenvectors or natural modes of vibra-
tion of the system.

Summary

» A MDoF system with N degrees of freedom has N circular fre-
quencies o, (n = 1,2,3,...,N) and N eigenvectors. Each ei-

genvector has N elements. The circular frequencies are
arranged in ascending order, i.e.: 0, <®,<...<®,.

* Natural circular frequencies and eigenvectors are properties of
the MDoF system and depends only from its mass and stiff-
ness properties.

* The index n refers to the numbering of the eigenvectors and
the first mode of vibration (n = 1) is commonly referred to as
the fundamental mode of vibration.
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9.2 Example: 2-DoF system

n,
(> U

We consider a regular 2-DoF

ky/2 ky/2 oscillator with
e mp = my = m
and

- 5 T

The equation of motion of the system corresponds to equation
(8.7):

Ll L0k - o1

9.2.1 Eigenvalues

The eigenvalues are calculated from the determinant:

K-o2M| = A-ogm k| (9.13)

&k k-o.m
which gives a quadratic equation in (ni

(2k—@’m) - (k-0-m) — (k) - (-k) = m’ o, —3kma. +k* = 0 (9.14)
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and both solutions yield the following eigenvalues:

Jom? _ aim?
o~ dkmE9k'm” 4km” _ 3+.5 k (9.15)

n 2m2 2 m

For each eigenvalue mfl we can now compute an eigenvector
and a natural circular frequency.

9.2.2 Fundamental mode of vibration

23fk

With the smallest eigenvalue v, = =—== - = we obtain the

1. circular frequency o, = / - 0618[ (9.16)

By substituting this eigenvalue o)1 into the system of equations

21

a8 B N ) H
o (3FRY :
(9.17)

we obtain two independent equations that can be used to deter-
mine the elements of the first eigenvector ¢,. The first row of the
system yield the equation:

(1+[)k

)Xy ko =0  and o, = (1+2ﬁ)¢“ (9.18)

and by substituting this into the second row we obtain:
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-1 S)k((1 5
ko, + BB, ) (9.19)
-k¢;; +ko,, =0
b1 = 0y

As expected, the eigenvector is determined within a multiplica-
tive constant, and can therefore be arbitrarily normalized as fol-
lows:

* so that the largest element of the eigenvector is equal to 1
 so that one particular element of the eigenvector is equal to 1
+ so that the norm of the eigenvector is equal to 1

Fundamental mode:
o, = /3——2—@; = 0.618&
=0.62
k\ “Mode” Oy 2 0.618
¢, = = 11+.5 = {'1 }
egree of freedom” 02 1
L]
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9.2.3 Higher modes of vibration

Additionally to the fundamental mode of vibration, the consid-
ered 2-DoF system has a second mode of vibration.

The properties of this second mode of vibration can be comput-
ed in analogy to the fundamental mode and the following results
are obtained:

E Oy = -0.62

¢ =1

(‘\“Mode” 6, - F’ﬂ] - Q ) L 1 }

“‘Degree of freedom”

Second mode

Course “Fundamentals of Structural Dynamics” An-Najah 2013

9.2.4 Free vibrations of the 2-DoF system

According to Equation (9.2), the free vibration of the 2-DoF sys-
tem is:

u = [C,cos(®;t) + C,sin(w,t)]¢; + [C5cos(m,t) + C,sin(w,t) ],

(9.20)

H = [Clcos((x)lt)JrCzsin(u)]t)][¢11] (9.21)

Uy 21

+[Cyco8(m,t) + Cysin(m,t)] Fﬂ
22

The still unknown constants C, to C, can be computed using the
initial conditions given by Equation (9.24) and become:

9 Free Vibrations Page 9-7

0ypul —¢,,u2 0Vl —0,,v2
C,=—F—7"—"F , C, = 9.22
: 01105 =920, 2 (01195, = 02,0, @, ( )
0y u2 —0,yul 01 v2 -0y vl
C = , C,= 9.23
’ 011055~ 0210, ! (011055 = 02191,) 0, ( )
u;(0) = ul
" " u,(0) = u2
Initial conditions: { (9.24)
u,(0) = vl
,(0) = v2

For an alternative methodology to compute the constants C, to

C, see Section 9.6.
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» Case 1: ul = 0.618, u2 = 1.000, vl = v2

Il
o

1.2

----First mode

1.0 — -Second mode

0.8 —Total dlsplacement
0.6

0.4

évvvvvv

-1.2

Displacement u2 [m]

0 5 10 15 20
Time [s]

1.2
10

----First mode
— -Second mode
0.8 | —Total displacement

AW AWAWAWAWA
VY. ]\/\f

0.2 f
Time [s]

Displacement u1 [m]

0.0 \
-0.2 |

04

-0.6 \/

-0.8
-1.0 f
-1.2

9 Free Vibrations Page 9-9

Course “Fundamentals of Structural Dynamics”

An-Najah 2013

e Case 2: ul

1.2

1.0 |
0.8
0.6
04
0.2

0.0

-0.4
-0.6
-0.8
-1.0
-1.2

Displacement u2 [m]

1.2
1.0
0.8
0.6
0.4

0.0

Displacement u1 [m]

-0.6

-0.8 |
1.0 |

-1.2

1.000, u2 = -0.618, vl

=0

----First mode
— -Second mode
—Total displacement

(\

-0.2 F

(i
il

10
Time [s]

15 20

—

—Total displacement

----First mode
— -Second mode

0.2 F

0.2 |
04 f

10

Time [s]

15 20
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* Case 3: ul = 0.618, u2 = 0.000, vl = v2 =0
0.8
----First mode
06 F — -Second mode

—Total displacement

04

0.2 F

Displacement u2 [m]
o
o

-0.2
-0.4
-0.6
-0.8 L
0 5 10 15 20
Time [s]
0.8
----First mode
0.6 — -Second mode
n ” —Total displacement
04 fl | (I [ i Ao a

' ’ I |

| o AR ‘l

0.2 ] 8 {\ A N g ﬂ X ” g ,'—L\\
oo NV IA L EVA VRV E Y YR UV L

Displacement u1 [m]
s
N
1
_—
(
{
_——
———\\ S
\
e

_—

0.4 /
-0.6
-0.8
0 5 10 15 20
Time [s]
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9.3 Modal matrix and Spectral matrix

All N eigenvalues and all N eigenvectors can be compactly rep-
resented in matricial form:

* Modal matrix

¢1p 01 - Oy
® = [0,] = Pa 0pp --r Poy (9.25)
UNTINCIRERUNN

« Spectral matrix

o 0 ... 0
2
QZ _ 0 0)2 ... 0 (926)
0 0 ...0%

Equation (9.6) can therefore be rearranged as follows:
K¢, = Mo, 07 (9.27)

and it is immediately apparent that the equation for all eigenval-
ues and all eigenvectors can be expressed in terms of modal
and the spectral matrices, as follows:

K® = MoQ’ (9.28)
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9.4 Properties of the eigenvectors

9.4.1 Orthogonality of eigenvectors
The orthogonality conditions of the eigenvectors are:
0.Ko, = 0 and ¢, M¢, = 0 for n#r (9.29)

and can be proven by means of Equation (9.27). Equation (9.27)
is first to be set up for the eigenvector vector n, and then pre-
multiplied with ¢ on both sides:

6, K0, = 020, M, (9.30)

Afterwards, Equation (9.30) shall be transiposed making use of
the symmetry properties of the matrices K = Kand M = M:

0. K9, = ©20,Mo, (9.31)

Now, Equation (9.27) shall be set up for the eigenvector vector
r, and then pre-multiplied with ¢, on both sides:

0,K9, = 070, Mo, (9.32)

Equation (9.32) can now be subtracted from Equation (9.31)
yielding the following equation:

(02— 02)0, Md, = 0 (9.33)

In the case that the eigenvalues are diffTerent, then for n#r we
have (o2-w?)=0 and the expression ¢, M¢, must be zero. In
the case that an eigenvalue occurs more than once, the eigen-
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vectors are linearly independent and can be chosen so that they
are orthogonal (proof complicated).

So far we have shown that ¢ M¢, = 0 for n=r. By means of
Equation (9.32) we can prove also the ¢, K¢, = 0 for n=r. We
have already seen that for n=r the right hand side of Equation
(9.32) is equal to zero. For this reason also the left hand side of
Equation (9.32) must be equal to zero, which conclude the veri-
fication.

Example: 2-DoF system

In the following the orthogonality of the eigenvectors of the 2-
DoF system presented in Section 9.2 is checked:

* Relative to the mass matrix

2
01 Mo, = Lf—ﬁ 1}{“1 0] 1+ /3 _ MG+ 5) g,

0 m (1+.3)°

(9.34)

T 2 m 0 — ! |
M¢, = |—— 1| - : =0 9.35
¢, Mo, L*’ﬁ } {Onj 12ﬁ ( )

T _ 2 _
0, Mo, = {1 L;é}{m } 1+.45 =0 (9.36)

2 0 m 1
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1
01 Mo, = {1 l—ﬁ}[m 0] 5 =%1(5—ﬁ):1.382m
m —_

2
(9.37)
» Relative to the stiffness matrix
01Ko, = |—2— 1 {Zk‘k]_lf[_ _ 2R3 g 5o
s e | avs T
- (9.38)
T 2] 2k K] n
Ko, = 1] - - =0 9.39
6, Ko, _1+J§ IR 12ﬁ ( )
— —_ - — B 2 ]
01 Ko, = | L=/5] . |2k K TR =0 (9.40)
2 | |k k| |
T J3l .12k —k ] k
Ko, = |1 L=+5|. X = 2(5+./5)=3.618k
¢, Ko, [l 5 } Lk J lzﬁ 5 )

(9.41)
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9.4.2 Linear independence of the eigenvectors

The eigenvectors are linearly independent. To prove this, it
needs to be shown that if

00y T ohy + . T o0, =0 (9.42)

then all scalars o, must be equal to zero.

To this purpose, we left-multiply Equation (9.42) by q)iTM and we
obtain:

0y (040, + 00, + .. + 0,0,) = & Myo; = 0 (9.43)

In Section 9.4.1 we have shown that q)iTMq)i;tO, therefore
o, = 0 meaning that the eigenvectors are linearly independent.

The property that the eigenvectors are linearly independent,
is very important because it allows to represent any dis-
placement vector as a linear combination of the eigenvec-
tors.
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9.5 Decoupling of the equation of motion
The equation of motion for free vibrations is

Mii + Ku = 0 (9.44)
and as a possible solution the displacement vector

u(t) = 3 q;(t)e; (9.45)

can be assumed, where:
¢,: linearly independent eigenvectors of the system
q;: modal coordinates

The displacement vector u(t) and its double derivative

i(t) = Y q;(1)o; (9.46)

can be substituted into Equation (9.44), and the latter can be left-
o T . 4 : )
multiplied by ¢ yielding the following equation:

0aM(Zii(00,) + 01K T a09) = 0 (9.47)

Because of the orthogonality properties of the eigenvectors only
one term of the summations remains, i.e.:

Op Mo, () + O K, q, (1) = 0 (9.48)

where:
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Modal mass: m* = ¢, Mo, (9.49)

Modal stiffness: k' = ¢, Ko, (9.50)
and Equation (9.48) can be rewritten as follows:
m; g, (t) +k;q,(t) = 0 (9.51)

For each n we can set up such an equation, which yields to N
decoupled Single Degree of Freedom systems. The total dis-
placement of the system can then be computes as the sum of
the contribution of all decoupled SDoF systems, i.e.:

N

u(t) = ¥ q;(H)9; (9.52)

i=1

in matricial form:

q,(t)

u(t) = dq(t) withq =] (9.53)
qn(t)
M*§+K'q =0 (9.54)
with

m, 0 k} 0
M =0'MO=| and K'=@®'K®=|
0 m, 0 k;

(9.55)
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In Equations (9.52) and (9.53) are rewritten

N

u(t) = ¥ q;(Ho; = @q(t) (9.56)

i=1

the LHS and the RHS of the resulting equation can be pre-mul-
tiplied by <|> M and we obtain:

N
OaMu(t) = 3 6, Mo;q;(1) (9.57)
i=1

Because of the orthogonality of the eigenvectors (see Section
9.4.1), Equation can be further simplified to:

¢: Mu(t) = ¢I Mo, q,(t) (9.58)

which yields the following relationship between q (t) and u(t)
qy(t) = ——— (9.59)

or introducing the definition of the modal mass given by Equation
(9.49) we obtain the equivalent expression

TMu(t)
q,(t) = q’m—“ (9.60)

n

Equations (9.59) and (9.60) will be later used to compute the re-
sponse of MDoF systems.
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Example: 2-DoF system

The modal masses and modal stiffness of the 2-DoF system of
Section 9.2 were already checked during the verification of the
orthogonality of the eigenvectors (See Equations (9.34), (9.37),
(9.38) and (9.41)). They are:

m’ = T Mo, - 2m(5+[’ ~1.382m (9.61)
(1-45)
ml = ¢ Mo, = %‘(sfﬁ)z 1.382m (9.62)
k' = oTKg, — 2KE=4) f) =0.528k (9.63)
(1 —ﬁ
= 01 Ko, = 1§(5+ J5) = 3.618k (9.64)

* First modal SDoF system:
m;q,(t) +kyq,(t) =0 (9.65)

1.382md, (t) +0.528kq, () = 0 (9.66)

f Jm 0618[ (9.67)

The natural frequency corresponds to equation (9.16) of this
chapter
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» Second modal SDoF system:
m;d,(t) +kyq,(t) = 0 (9.68)

1.382md,(t) +3.618Kkq,(t) = 0 (9.69)

k*
w, = -2 = 3818k _ 1.618J£ (9.70)
m, 1.382m m

The natural frequency corresponds to the result shown on page
9-7.
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9.6 Free vibration response

9.6.1 Systems without damping
The equation of motion for free vibration of a system without
damping is

Mii + Ku = 0 (9.71)
and making use of the possibility of decoupling of the equation
of motion, the total deformation u(t) under free vibration can be

computed as the sum of the contribution of all modes. The equa-
tion of motion of the n" decoupled SDoF system is:

m_ g, (t) +k q,(t) = 0 (9.72)

and its solution can be computed as discussed in Chapter 3 for
SDoF systems. If we make use of the second formulation with
“trigonometric functions” (see Section 3.1.2), the solution is:

q,(t) = A cos(w t)+ B sin(mt) (9.73)

The the total deformation u(t) under free vibration is hence

N N
u(t) = 3 0;q.(t) = 3 0;[A;cos(w;t) + Bysin(w;t)] (9.74)
i=1 i=1
The 2 - N constants A; and B, can be computed by means of the
initial conditions u(0) = u, and u(0) = v,.

To this purpose, the vector of the velocity is needed and can
easily be computed by deriving Equation (9.74), i.e.:
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N N
u(t) = Y ¢;q.(t) = 3 ¢;m;[-A;sin(w;t) + Bicos(w;t)] (9.75)

i=1 i=1
Considering Equations (9.74) and (9.75) at the time t = 0, we
have.

N N
u(0) = 3 ¢;q;(0) and u(0) = 3 ;4,(0) (9.76)
i=1 i=1
Making use of Equation (9.59) we can now write the equations
to compute the initial conditions of the nth decoupled SDoF sys-
tem as:

T
Mu(0
q,(0) = q)“T—u() (9.77)
o, Mo,
Y10
q,(0) = (I)HT—u() (9.78)
0, Mo,

In Section 3.1.2 (see Equation 3.18) it as been shown that the
constants A and B are equal to q,(0) and q,(0)/®,_, respec-
tively, hence Equation (9.74) can be rewritten as:

q;(0)

®;

N
u(t) = Z q)i[qi(O)cos((oit)Jr

i=1

sin((oit)} (9.79)
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9.6.2 Classically damped systems

The equation of motion for free vibration of a system with damp-
ing is
Mii+Cu+Ku =0 (9.80)

As it will be shown in Chapter 10, if the MDoF system is classi-
cally damped, the equation of motion can be decoupled analo-
gously to system without damping, and the total deformation u(t)
under free vibration can be computed again as the sum of the
contribution of all modes. The equation of motion of the nth de-
coupled SDoF system is:

m>§, (1) +crq, (1) +k g (t) =0 (9.81)
or

.. 2

4, () +20,8,q () +0,q,(t) = 0 (9.82)
where

« _ T _ C:; .

¢, =¢,Co, and { = —, respectively. (9.83)

2m o,

The solution of Equation (9.82) can be computed as discussed
in Chapter 3 for SDoF systems. According to Equation (3.50) we
have:

Lo, t
q,(t) = e s [A,cos(w,4t) + B sin(m 4t)] (9.84)
where:
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W,y = O] - CZ “damped circular frequency of the n" mode”
(9.85)
The the total deformation u(t) under free vibration is hence

N N

ut) = Y oq() = Y ¢ie’g‘°“t[Aicos(midt)+Bisin(midt)] (9.86)

i=1 i=1

As in the case of the undamped systems, the 2 - N constants A;
and B; can be computed by means of the initial conditions
u(0) = uy and u(0) = v,.

For the n" decoupled SDoF system according to Equation (3.51)
the constants A and B, can be expressed in function of the in-
itial conditions of the modal coordinate q as follows:

A, = q,(0) (9.87)

n

_ 4,(0) + £00,,(0)

W4

B

n

(9.88)

where the initial displacement q,(0) and the initial velocity q,(0)
can be computed by means of Equations (9.77) and (9.78).

Hence, the total displacement of a classically damped MDoF
system under free vibration can be computed as:

WO+ ;wiqi(o)sin(midt)J (9.89)

N
un) = ¥ ¢ie’g°°"t[qi<0>cos<widt> -

i=1 i

For nonclassically damped system see e.g. [Cho11], Chapter 14.
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10 Damping

10.1 Free vibrations with damping

The differential equation to compute the free vibrations of a
MDoF system is:

Mii+Cu+Ku = 0 (10.1)
with the initial conditions:
u(0) = u, and u(0) = v, (10.2)

The displacement vector u(t) may be expressed as linear com-
bination of the eigenvectors, i.e. u(t) = ®q(t), and Equation
(10.1) becomes:

M®g+Chq+Kdq = 0 (10.3)

Equation (10.3) may be further multiplied by @" yielding the fol-
lowing equations:

O ' M®G+D COG+D KPq = 0 (10.4)
M*§+C*"q+Kq =0 (10.5)
Definition:

» A system is classically damped if the matrix C* is diagonal

* A system is non-classically damped if the matrix C* is not di-
agonal
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10.2 Example

The properties of the 2-DoF system are:
m; = 2m : m, = m (10.6)
k, = 2k , k, =k (10.7)
while the damping characteristics will be defined later.
* Natural frequencies and eigenvectors

The natural frequencies and the eigenvectors of the 2-DoF sys-
tem can be easily computed as:

Natural frequencies: 0, = & m2=J% (10.8)

o) = Pﬂ, 0, = m (10.9)

Eigenvectors:
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10.2.1 Non-classical damping
The damping characteristics of the 2-DoF system are chosen as:
¢, =c , c, = 4c (10.10)

The equation of motion of the system can be easily assembled
by means of the equilibrium formulation:

ool L - w1

It is now attempted to decouple the equations by computing the
modal properties of the 2-DoF system:

=1 Ll Bmo
M = &' Mo = |2 {2“1 0] S R (10.12)
o LMy 0 3m
1 1 3
=1 = 1] 2k 0
K' = @Ko - |2 {3kk] 2 -8 (10.13)
S| Rk 0 6k
Iy I 5. 1.
c*-o'co - |? {50 ‘40}- 2 =14 2 (10.14)
Spoq| e ded %c 17¢

The Matrix C* is not diagonal, hence it is not possible to decou-
ple the equations!
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10.2.2 Classical damping
The damping characteristics of the 2-DoF system are chosen as:

¢, = 4c , c, = 2¢ (10.15)

The equation of motion of the system can be easily assembled
by means of the equilibrium formulation:

o 51 A R W T

It is now attempted to decouple the equations by computing the
modal properties of the 2-DoF system:

%m 0 %( 0
M = , K - (10.17)
0 3m 0 6k
1 1 3
- = 1 2¢ 0
c'-o'co- |2 [60 20] 2 -2 (10.18)
poq| EeZel g 0 12c

The Matrix C* is diagonal, hence it is possible to decouple the
equations!
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10.3 Classical damping matrices

10.3.1 Mass proportional damping (MpD)
C = aM (10.19)

The damping constant of each mode of vibration is therefore:

cr = aym, (10.20)
and the corresponding damping ratio {, becomes (see Section 3.2):
Cz aom; D)
= = = 10.21
n 20,m;  20,m;5 20 (10.21)
10.3.2 Stiffness proportional damping (SpD)
C = a,K (10.22)

The damping constant of each mode of vibration is therefore:

a k! = a0.m (10.23)

*_
Ch = n

n

and the corresponding damping ratio , becomes:

* 2 o«

c a;0,. m a
anzn*zlnfzémn (10.24)
om,  20,m,

Remark

Both MpD and SpD, taken alone, are not a good approximation
of the behaviour of real structures. Studies have shown that dif-
ferent modes of vibration exhibit similar damping ratios.
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10.3.3 Rayleigh damping
C =aM+a K (10.25)
The damping constant of each mode of vibration is therefore:

¢, = aym;+tak = (a0+a10)r21)m; (10.26)

and using the results for MpD and SpD damping ratio ¢, be-
comes:

G = =+ S0, (10.27)

20,

The coefficients a, and a, may be computed for vibration modes
i and j by means of equation (10.28):

|—

a9
>

ay
TS0 &
‘ (10.28)
§;

e

+

a
0

L=
| 2

In the case that {; = {; = ¢, coefficients a, and a; can be com-
puted as follows:

20,0, 2
aOZC'wi.i_(éj a :C.mi+mj (1029)
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10.3.4 Example

A damping matrix shall be assembled so that in the case of the
2-DoF system shown on page 10-2 both modes of vibration are
characterised by the same damping ratio C.

The natural frequencies are:

o, = Jgn o, - J% (10.30)

hence the coefficients a, and a, become:

ay = 46 [m Kk al:‘%.& (10.31)

3 2k m’

yielding the damping matrix C = a)M +a,K equal to:

k
C AL fm |mAm 07K ag /m_k[S 1}
3 2k 3 2 _
T 12

—-m+k

m
(10.32)
Check
. T Lyl ag fmk 5 -1] |2 mk [3 0
C-ece= )2 3J:'12'2 CJj'ou
11 - 11
(10.33)

The damping matrix is indeed diagonal.
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If we choose values for m, k and ¢ so that

o, = 2rad/s, ©, = 5rad/s, { = 5% (10.34)
the coefficients a, and a; become:

a, = 14.287, a, = 1.429 (10.35)

and the representation of the damping ratio in function of the nat-
ural circular frequency is:

10 7 T T
9 } ==-Mass proportional damping
— Stiffness proportional damping

8 I _ _ |
e\'? —Rayleigh Damping /
J ol / —
s -~
o 6 — =
- ~
© \ =~
= 5 N —
(o] \ ~
S 4} A% ~
Qo \\ P ~
E 4l AN —~
1] So P
o So.

2 o ,»~_\~~§

B e S
1 R T e
> N s J TPy S
~

0 L I 1 I
0 1 2 3 4 5 6 7 8 9 10

Circular frequency ®
Remarks

- If there are more than 2 modes of vibrations, then not all of
them will have the same damping ratio.

- If more than 2 modes of vibrations should have the same
damping, then a different damping modal shall be used. To
this purpose see e.g. “Caughey-Damping” in [Cho11].
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11 Forced Vibrations

11.1 Forced vibrations without damping

11.1.1 Introduction

Sought is the response of the 2-DoF system as a result of the ex-
ternal excitation force F(t) given by Equation (11.1)

F(t) = {Fl“)] (11.1)

Fo (1)
The equation of motion of the system is:
Mii(t) + Ku(t) = F(t) (11.2)

The displacement vector u(t) can be represented as a linear
combination of the eigenvectors of the 2-DoF system,
u(t) = ®q(t), and Equation (11.2) becomes:

M®{+ K®q = F(t) (11.3)
We can now multiply Equation (11.3) by ®" obtaining:
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@ 'Mdj+ @ Kdq = @ F(t) (11.4)
M*i + K*q = F*(1) (11.5)
Where

- M*: Diagonal matrix of the modal masses m;
- K*: Diagonal matrix of the modal stiffnesses k;
- F*: Vector of the modal forces F

For the considered 2-DoF system, Equation (11.5) can be rear-
ranged as:

{qul +qu1 = FT (11.6)
m;qz +k§q2 = F)
or as alternative:
F*
.. 2 1
q toq = o
! (11.7)
2 F2
G, T 0,9, = —
m,

The two equations of the system (11.7) are decoupled and can
be solved independently. The constants resulting from the solu-
tion of the system can be determined by means of the initial con-
ditions u(0) = u, and u(0) = v,.
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11.1.2 Example 1: 2-DoF system

The properties of the 2-DoF system are:

m; = 2m , m, = m (11.8)
k, = 2k , k, = k (11.9)
¢, =0 , c, =0 (11.10)

The external excitation is:

F(t) = {Fosm(“’t)} (11.11)
0

and the modal excitation force is calculated using the modal ma-
trix:

1
2 F,sin(mt
0

F*(t) = @ F(t) = > (11.12)

—F,sin(wt)

)} F,sin(wt)
-1 1

The system of equations becomes:
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. 2 F,sin(wt) _ F,sin(wt)

q, toq, = 2-(3/2)m 3m - fisin(ey) (11.13)
) —F,sin(ot)  —F,sin(ot) . .
iy oy = —— = o = fsin(ey
with
E _ K
f =5 and f, == (11.14)

Each equation of the system (11.13) corresponds to the equation
of motion of an undamped SDoF system under an harmonic sine
excitation. The complete solution of these differential equations
has been discussed in Chapter 4 and it is:

f
qy = Ajcos(@,t) + A,sin(o,t) + — - > sin(ot) (11.15)
0, — O

The two equations have the following solutions:

q; = Ajcos(m;t) + A,sin(wt) + 2sin((y)t)
0] -
(11.16)
q, = Ajcos(m,t) + Aysin(,t) + 3 2sin((x)‘[)
0, -0

The 4 constants A, to A, can be easily computed for the initial
conditions u(0) = u(0) = 0 by means of the mathematical soft-
ware “Maple”. They are:
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A =0 (11.17)
o/0, F, ®/ o,
A, = — — = = f (11.18)
? ol—o M ol - :
Ay =0 (11.19)
/0 F o/ m
Ay = — 22-§I—21=—2 22-f2 (11.20)
0, -0 (OREO)
The displacements q, becomes:
W/, . £,
q = | 2~f1 sin(,t) + 3 2s1n(00t)
0] -0 0] -0
(11.21)
®/ 0, _ £, .
Q=" 2-f2 sin(,t) + 3 2sm((J)t)
0, — 0 0, — 0
or
sin(ot) — (w/®;)sin(w;t)
q = f > 2
0] -0
(11.22)
sin(®t) — (w/®,)sin(w,t)
9 = 2 2
0, — 0
Therefore, the total displacement u(t) becomes:
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u(t) = @q(t) = 3 ¢,q,(t) = 0;q;(t) +,q,(t)

l[ {sin(mt)—(w/wl)sin(mlt)D
u = [2|f; +
1

2 2
0, -

4 ; sin(®t) — (0/®,)sin(®,t)
1 : co2 —0)2
L 2

(11.23)

(11.24)

(11.25)
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11.1.3 Example 2: RC beam with Tuned Mass Damper (TMD)
without damping

* RC Beam
E(®) + Damping ratio
= — (=00
L 19.0 m J « Modal mass
M, = 5.626t
0.90 m * Modal stiffness
| K, = 886kN/m
. SL | J + Natural frequency
gi fn = 2HZ
S Stirrup D8, s=200
.. b ..

/ 0.40 m \ 6 D22
Tendon 22 D7, P;,; = 705 kN

* TMD (In this case damping is neglected)

» Damping ratio
Cr = 0.0

* Mass
M, = 0.310t

» Stiffness
K; = 44kN/m

* Natural frequency
fr = 1.90Hz

CCourse “Fundamentals of Structural Dynamics” An-Najah 2013
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* RC beam with TMD
F(t)

==
19.0 m

*—p

— Concrete block (mass)

Spring
» Excitation

As excitation a vertical harmonic sine force acting only on the
beam is assumed.

F(t) = F,sin(ot) (11.26)

with:  : excitation frequency
F: static excitation force: F, = 0.8kN

e Solution

Both the transient and the steady-state part of the solution are
considered.
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» Case 1: K; = 10000kN/m, excitation frequency f = 2Hz 140 _
——Displacement of the beam (u1)
0.04 ‘ ‘ ‘ ‘ ‘ ‘ _ 120 . -=-Displacement of the TMD (u2)
‘ —Displacement of the beam ‘ LN ”
0.03 f < 100
_ k]
£ 2]
=002} Hu H M M e ) < 8o
= c
S o001 f n " F n n | -% o b
g, v/\vl\vﬂ I It MVAW ’I\ g \
£ 2 40 [ |
g -0.01 | U\ ‘J VJUV V 52
a * ]| |
0 - 1 ——— |
003 ¢ 05 06 07 08 09 1 11 12 13 14 15
0.04 | | | | Excitation frequency / Natural frequency of the beam [-]
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time [s] * Remarks
0.04 - The amplification factor A is defined as:
—Displacement of the TMD
0.03 ATMD = u2/ust ) ABeam = ul/ust
E o002 f
£ % g « w «r w ‘r ( ? where u,, = F /K,
S o001 F - . . .
5 [ - The solution was computed by means of the Excel file giv-
e 0 \/‘*’\/\ en on the web page of the course (SD_MDOF_TMD.xIsx)
(%)
s oo u ! - The Tuned Mass Damper (TMD) is blocked
a .002 f . .
0.02 - The natural frequency of the beam with TMD is: f, = 1.94Hz
-0.03 ,
' - At f = f resonance occurs. In the diagram above the am-
004 H=ms————— : plification factor is limited, because the response of the
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 .
Time [s] system was only calculated during 60 seconds.
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» Case 2: K; = 44kN/m, excitation frequency f = 2Hz 350 :
——Displacement of the beam (u1)
0.008 ‘ ‘ ‘ ‘ ‘ ‘ _ 300 -=-Displacement of the TMD (u2)
‘ —Displacement of the beam ‘ L A
0.006 f - T 250 "
- g H \
(¢
E oo00s | & 200 X g
s 1 s ' ’
S 0.002 | = ' M
-~ 8 150 [ ) [] .|
S A A A = [ [BH
[ 0 V w N = " '| " ]
£ V UN v U \ £ 100 ry i
S -0.002 f L | < ;o SN
s 50 | : T 1 L%
E -0.004 ) ] _—"z' S=—-e \\‘ .
0 bessemacooom S~ | SR c=—ee . e
-0.006 05 06 07 08 09 1 11 12 13 14 15
-0.008 | ] | | Excitation frequency / Natural frequency of the beam [-]
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time [s] * Remarks
0.04 - The amplification factor A is defined as:
—Displacement of the TMD
0.03 ATMD = u2/ust ) ABeam = ul/ust
E 002} } ‘H where u,, = F /K,
N
S 0.01 * . . .
£ - The solution was computed by means of the Excel file giv-
e 0 en on the web page of the course (SD_MDOF_TMD.xIsx)
(%)
T . V | .
= 0o INRINIL ' W‘ - The Tuned Mass Damper (TMD) is free to move
o -0.02 f .
- Noresonance at f = f, occurs. Resonance occurs in corre-
-0.03 | spondence of the first and of the second natural frequen-
DYV I S . cies of the 2-DoF system.
0 1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 In the diagram above the factor A is limited, because the
Time [s] response of the system was only calculated during 60s.
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11.2 Forced vibrations with damping

11.2.1 Introduction

Sought is the response of the 2-DoF system as a result of the ex-
ternal excitation force F(t) given by Equation (11.27)

Foy = [T (11.27)
Fo(t)

The equation of motion of the system is:
Mii(t) + Cu(t) + Ku(t) = F(t) (11.28)

The displacement vector u(t) can be represented as a linear
combination of the eigenvectors of the 2-DoF system,
u(t) = ®q(t), and Equation (11.28) becomes:

Mdg + CPq+Kdq = F(t) (11.29)
We can now multiply Equation (11.29) by ®" obtaining:
O 'M®G+ D COG+D KDq = @ F(t) (11.30)

M*§+C*"q+K'q = F(1) (11.31)

CCourse “Fundamentals of Structural Dynamics” An-Najah 2013
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Where:

- M": Diagonal matrix of the modal masses m

K": Diagonal matrix of the modal stiffnesses k;

F*: Vector of the modal forces F;

C”: Matrix of the modal damping constants. It is diagonal
only if the system is classically damped (see Chapter 10).

For the considered classically damped 2-DoF system, Equation
(11.31) can be rearranged as:

{qul + qul + qul = F| (11.32)
m§q2 + cng + k§q2 =F,
or as alternative:
) o Fi
q, +28,m,q, +0\q; = .
1 (11.33)
F*
. . 2 2
4y +28,0,4, + 039, = —
m,

The two equations of the system (11.33) are decoupled and can
be solved independently. The constants resulting from the solu-
tion of the system can be determined by means of the initial con-
ditions u(0) = uy and u(0) = v,.
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11.3 Modal analysis: A summary

The dynamic response of a Multi-Degree of Freedom (MDoF)
system due to an external force F(t) can be computed by means
of modal analysis. The required steps are:

1)

Compute the properties of the MDoF system
- Compute the mass matrix M and the stiffness matrix K.

- Estimate the modal damping ratios Z;;

Compute the natural circular frequencies _ and the eigen-
vectors ¢

- Compute the modal properties of the MDoF system (M*,
K")
Compute the response of every mode of vibration

- Set up the equation of motion of the modal SDoF systems

F*
G, +28 0,9 +olq, = r;‘l and solve it for q,,
n

- Compute the modal displacements u_(t) = ¢ q,

- Compute the sectional forces by means of the static equiv-
alent forces F (t) = Ku,(t) = K¢,q, = ©2M¢,q,(t)

Sum up (respectively combine) the contribution from all
modes of vibration to obtain the total response of the system.

CCourse “Fundamentals of Structural Dynamics”

An-Najah 2013
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12 Seismic Excitation

12.1 Equation of motion

12.1.1 Introduction

In analogy to Section 2.1.1, the equation of motion of the system
depicted here can be formulated by means of the d’Alembert
principle F+ T = 0 applied to each one of the masses.

y; = x(t) +1; +ug; +u(t)
Y1 = X() T, (1)
Ty = -mpy, = -m(X+1i)

Fy = -k(ug, tu))—cpu;+myg
tky(ug tuy—uy) (i —1y)

Fp = =k +kyu; +kyu, —(c; +¢cy)uy +e,u,
Yo = x(O) + 1 +ug + 1 +ug +uy(t)
§, = K(t) + (1)

Ty = —my¥, = -my(X+1,)

Fy = —ky(ug, tuy—uy) —cy(u,—uy) +myg

F, = kyu; —kyu, +cyu; —cyu,

12 Seismic Excitation Page 12-1
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The system of equations governing the motion of the system is

F,+T, =0
(12.1)
—m;(X+1,)—(c; +¢c,)u, +c,u, — (k; +ky)u; +kou, = 0
1 1“ ”1 2 .1 2.2 1T KU TRyl (12.2)
—m,(X +1,) + ¢ i —cyu, T kyu; —k,u, =0

and in matricial form:

B I R e | L I R R | R e
0 my||X+i,| | —¢, cy|Uy| | —ky ky||u, 0

or:

my O | \XH+1y ey by —eoljuy| kg ks kol ugl o (12.4)
0 m,| X+, ¢ G|l & kol 0

or:

my 0| gty —eof fuy kg tky Skopluyl o imy 01
0 m,| U, ;G| -k, k| |y 0 m, H
(12.5)

which is similar to Equation (8.3) meaning that the base point ex-
citation x(t) can be considered equivalent to two external forces
f,(t) = m;X(t) and f,(t) = m,X(t) acting on the masses m, and
m,. This is the same interpretation given in Section 2.1.1 for
SDoF systems.
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12.1.2 Synchronous Ground motion

As shown in the previous section, the equation of motion of a
system subjected to a base excitation is:

Mii, + Ci+Ku = 0 (12.6)

where 1ii, is vector of the absolute accelerations of the DoFs of
the system while u and u are the vectors of the relative veloci-
ties and of the relative displacements of the DoFs of the system,
respectively.

The absolute displacement u, of the system can be expressed
as:

u, = u,tu (12.7)

a

where u, is displacement of the DoFs due to the static applica-
tion (i.e. very slow so that no inertia and damping forces are gen-
erated) of the ground motion, and u is again the vector of the rel-
ative displacements of the DoFs of the system.

The “static displacements”™ u (t) can now be expressed in func-
tion of the ground displacement u,(t) as follows:

u (t) = tug(t) (12.8)

where 1 is the so-called influence vector. Equation (12.6) can
now be rewritten as:

M(tii, + i) + Cti + Ku = 0 (12.9)

Mii + Cii + Ku = ~Muiiy(t) (12.10)
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Influence vector for some typical cases

 Planar system with translational ground motion (Case 1)
In this case all DoFs of the system undergo

N H static displacements u (t) which are equal
@@

U
to the ground displacement ug(t), hence:

Us

U

v= 1 =1 (12.11)

where 1 is a vector of order N, i.e. the
number of DoFs, with all elements equal to 1.

\
\
\
\
\
|
\
T
=1

* Planar system with translational ground motion (Case 2)

Nzl‘

sn = 1
IHIZI

Lot

m m The axial flexibility of the elements
2 3 W,

@**%—‘3—?ﬂ> of the depicted system can be ne-

u3 glected, hence 3 DoFs are defined.

In this case DoFs 1 and 2 undergo

static displacements which are

@y equal to the ground displacement,

while the static displacement of
DoF 3is equal to 0, i.e.:

\
\
\
\
\
\ my
)

R

1

e 1= 1 (12.12)
u, =1
i 0
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* Planar system with rotational ground motion.

The depicted system is subjected to a rotational ground motion 6
which generates the following static displacements of the DoFs:

hy hy

u (t) = h, eg(t) hence 1 = | (12.13)

2
L L

Remark

If the planar system with rotational ground motion has more than
one support and every support is subjected only to the base ro-
tation 6 _, then the static application of the base rotations typical-
ly create stresses within the system. Such a case must be con-
sidered like a multiple support excitation (see Section 12.1.3).

12 Seismic Excitation Page 12-5
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» Spatial system with multiple translational ground motion
Consider the spatial frame depicted here:

ue

Excitatign in * Excitation in
®the y-direction

the x-dir&tion

Ug,(t)

Picture from: Chaudat T., Pilakoutas K., Papastergiou P., Ciupala M. A. (2006) “Shaking Table
Tests on Reinforced Concrete Retrofitted Frame With Carbon Fibre Reinforced Polymers
(CFRP),” Proceedings of the First European Conference on Earthquake Engineering and

Seismology, Geneva, Switzerland, 3-8 September 2006

The equation of motion of the frame structure for the ground mo-
tions ugx(t) and ugy(t) neglecting damping is:
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Uy Uy
U L)
U, uz| . ..
M +K = My (t) - My (t) (12.14)
.. gx y gy
Uy Uy
Us Us
M6 M6
t t _0_ _1_
uz uz 1 0
M| k|5 = M| | i 0+ (O, (1) (12.15)
i, u, 0 1
i us 1 0
0 0
e Yol o o
and with
m U U —m i,
m, 0 i ) —m, iy,
I . .
M = 3 we obtain M 1.1'3 +K| 0“
0 my U ug —m51'igx
L 16_ _l.j.6_ _u6_ L O a
(12.16)
Remarks
* For other cases see [Cho11] Sections 9.4 to 9.6.
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12.1.3 Multiple support ground motion

Structures with a significative spatial extension may be subject-
ed to ground motion time-histories that are different from support
to support. A typical example for such structures is the bridge
shown in the following figure.

ug u u u u u ug
1’1’1g m m m m m mg

Ug

u u U,

g g g u

g

Example of structure where often multiple support excitation is applied: Plan view of the
dynamic model for the seismic analysis of a bridge in the transverse direction.
The springs represent the piers.

In this case it is distinguished between the DoFs of the structure
u,, which are free to move and whose displacements are ex-
pressed in absolute coordinates, and those of the ground u,,
which undergo the displacements imposed to the support. The
vector containing the displacements of all DoFs is hence:

a=|2 (12.17)

The equation of motion of the system can hence be expressed
as (see [Cho11]):

mT M| |Ua) CT el Ml kT Ke | U 0() (12.18)
. . ¢
m, m,|[U €y Cool [U kg, Kgo| |4 Py
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Where pg(t) are the forces resulting at the supports when the
supports undergo the displacements ug(t).

In Equation (12.18) the different matrices ---g1 - gg Ar€ NOt com-
puted separately, they just result form the partition of the overall
system of equations when the DoFs of the structure and of the
ground are collected as it is shown in the example of page 12-12.

The vector of Equation (12.17) can be rewritten as:

[

where u is the vector of the displacements of the DoFs of the
structure when the ground displacements u (t) are applied stat-
ically, and u is the vector of the relative displacements of the
DoFs of the structure.

The relationship between u  and ug(t) is given by the following
system of equation:

k k
CE Y| - 0 (12.20)
ky Ky, | | J

where p s is the vector of the support forces needed to impose
the displacements u, statically. If the system is statically deter-
minated, Py s is equal to zero (See example of page 12-12).

By introducing Equation (12.19) into Equation (12.18) we obtain
the new system of equations:
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T . T ; T
m, m, u, ¢, ¢, u, k, k, u, Py (t)

(12.21)

The first line of the system can be rearranged to:
mii + cui +ku = — (miig +m,ii,) - (cug+ e u,) — (kug+ kyu,) (12.22)

According to the first line of Equation (12.20) kug+Kk,u, =0
and hence Equation (12.22) becomes:

mii + cu+Ku = — (miig + m,ii,) - (cug+c,u,) (12.23)
If we now express the vector u, in function of the vector u, as

ug = u, (12.24)

the so-called influence matrix 1 can be computed, again mak-
ing use of the first line of Equation (12.20), i.e.:
—kgug = kug = k1ug (12.25)

and after rearranging we obtain:

1= Kk 'k, (12.26)

The influence matrix v is @a N x N_ matrix where N is the number
of DoFs of the structure and Ng is the number of DoFs of the
supports.

By introducing Equation (12.26) into Equation (12.23) the final
equation of motion of the system is obtained:
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mii +cu+Ku = — (mt+my)ii, - (ct+ey)u, (12.27)

Analogously, with the second line of Equation (12.21), an equa-
tion for the computation of the forces at the supports p,(t) can
be setup and solved.

Remarks

In Equation (12.27), the masses associated with the support are
often equal to zero, i.e. m, = 0. If this is the case, Equation
(12.27) simplifies to:

mii + ca + ku = —muii, — (et +¢y)u, (12.28)
And considering that in most cases the damping forces on the
LHS of the equation are small (and they are zero if no damping

is present) compared to the inertia forces (see [Cho11]), Equa-
tion (12.28) can be further simplified to:

mi + cu+ ku = —muu (12.29)

g

In the case that the movement of the supports is the same at all
supports, u, becomes:

u, = lu, (12.30)
and with 1 = 11 Equation (12.29) becomes
mii + ca + ku = —mui, (12.31)

which is the same as Equation (12.10).
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Example: 2-DoF system

The following 2-DoF system is subjected to multiple support
ground motion. Two different ground motions are applied to the
degrees of freedom u, and us. Sought is the equation of motion
of the system:

N El u4 %\% = s

fox . 1 N
L/2

L/2

—e—

The stiffness matrix of the system is assembled by means of the
Direct Stiffness Method and the following degrees of freedom
are considered:

u = [ﬂ : displacements of the structure (12.32)

Uy

u, = |u1] : displacements of the supports (excited, massless)
Us

(12.33)

u, = \uzi : displacements of the supports (not excited, massless)

Ue
(12.34)
The stiffness matrix K of the system is:
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12 6L -12 6L 0 0

6L 40> —6L 2 0 0

W _ E |-12-6T 12412 —6L+6L -12 6L
=3 _ _ _ _ _ _

L’ |6 2L% —6L + 6L 4L +4L” —6L 2L°

0 0 -12 6L 12 —6L
0 0 6L o0 6L 4L’

12 6L -12 6L 0 0 )|

6L 40> 6L 20> 0 0 u,

K % _12 —6I; 24 02 _12 6L2 U
L' | 6L 207 0 8% —6L 2L uy

0 0 -12 -6L 12 -6L us

0 0 6L 20° —6L 4L’ U

with L = L/2
By swapping DoF 1 and 3 we obtain:

24 6L -12 0 -12 6L |

6L 4L° 6L 207 0 0 u,
K:%.—lz 6L2 12 6L2 0 Oz’U u,
L' | o 2f% 6L 8L” —6L 2L uy
-12 0 0 -6L 12 —-6L us

6L 0 0 20° 6L 4L’ Y

(12.35)

(12.36)

(12.37)

Course “Fundamentals of Structural Dynamics” An-Najah 2013

12 Seismic Excitation

Page 12-13

By swapping DoF 2 and 4 we obtain:

24 0 -12 6L 12 6L] uy
0 8L° 6L 2L —6L 2L° uy

k= EL|712 6L 12 6L 00y (12.38)
L" |-6L 2L° 6L 4L° 0 0 u,
-12 6L 0 0 12 -6L Us
6L 2L° 0 0 —6L 4L’ %

By swapping DoF 2 and 5 we obtain:

24 0 12 12| 6L 6L] |
0 8L’ 6L —6L|2L° 2L’ u,

K:%_ ~12 6E_ 12 0 | 6L 0] yo|u (12.39)
0* |-12-6L 0 12| 0 —6L us
6L 20" 6L 0 |4L° 0 u,
6L 2L° 0 —6L 0 4L’ Y

By means of static condensation we can now eliminate DoF 2
and 6. We racall that:

El |K¢ Ko 8 EI T, -1
K== 0k = =5 (K~ KokgoKgy) (12.40)
L™ |Ko¢ Koo L
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By performig the needed calculations we obtain:

0
B WS U B 3 sul I N Y
00 |k‘ 00 1 5
. 16L° | o 4L 0
4L’
—6L 6L 1
o o =0 o,
Kclk = [20° 2L 4L |-6L 2L~ 6L
000 Xot _ { ., B
6L 0 0 —5| [6L 20" 0 6L
| 0 6L 4L
18 0 -9 -9
T, -1 72
Ko Kgoko; = 0 2L 3L 3L
9 3L 9 0
-9 3L 0 9

24 0 12 12| |18 0 -9 -9

. _El || o 8% 6L 6L |0 20%3L 3L
tt 3 _

L” ||-12 6L 12 0 -93L 9 0

-12 6L 0 12 -9 3L 0 9

6 0 -3 -3
~ _EI |0 6L° 3L -3L
L° 330 3 o

33L 0 3

(12.41)

(12.42)

(12.43)

(12.44)

(12.45)
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The equation of motion of the system becomes:

M o0 o0ol |3 6 0 -3 -3
0 100 ﬁ4+2. 0 6E23I_4—3I_4. (12.46)
0000 |i T |33 3 o0
0000 iy 3-3L 0 3
We racall that:
. k k
Ke=2| %, u=—k'k, (12.47)
L |kl k
g 8
By performig the needed calculations we obtain:
T
3 |= 0
11 ~ L |6
k = m k=5 . (12.48)
0 TZ
L 6L_
L’ é O| & 3 3
U=k ky = o N 2 2 (12.49)
EL g L ¢ [3L3 11
6L 2L 2L
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The vector of the effective forces becomes:

M M
Pesr(t) = *(ml""mg)ﬁg(t) - | 2 ? ‘ [ug1] (12.50)

,L_ l"igS
2L 2L

And the equation of motion of the system finally becomes:

M M
Mo| |3 (EL |6 0| fusl | 2 2 iy (12.51)
01 iy L’ |06y |ug L L) [is

2L 2L

The following drawings show the interpretation of the elements
of the influence matrix t:

u, 40 ifu,, = 1 then:
ug]=1 1 1
. u, = -and u, = —
oL | 32 ¢ oL
uy 4% if u,s = 1 then:
ug5:1 | |
O
J ~ ‘ u3—§andu4—2—i

Remarks:

» See Section 9.7 of [Cho11] for an example with a statically in-
determinated system.

* In Finite Element analysis, when applying multiple support ex-
citation, support displacements instead of support acceleration
are often used. For more details see [Bat96].
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12.2 Time-history of the response of elastic systems

As discussed in the previous sections, the equation of motion of
a MDoF system under base excitation is:

Mii + Cu + Ku = —Muii (1) (12.52)
Where:
M: Mass matrix (symmetric and positive-definite, or diag-
onal if only lumped masses are present)
K: Stiffness matrix (symmetric and positive-definite)
C: Damping matrix (Classical damping: C is typically a

linear combination of M and K)
iig(t): Ground acceleration

1 Influence vector of order N. In the simplest case of a
planar system under translational ground motion v = 1.

If the damping of the MDoF system is classical, Equation (12.52)
can be written in the form of N decoupled modal equations,
where N is the number of modes of the system. The modal
equations are of the following form:

m J,+c,q,tk,q, = —q)anug (12.53)
or.
T
. . 2 o, ML
4,20 0.4, +w.q, = - T i, (12.54)
¢, M0,

The dynamic response of the MDoF system can be written as:
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N
u(t) = Y. 9,9,(0) (12.55)
n=1
o,: nth eigenvector of the MDoF system
q,(t): n" modal coordinate of the MDoF system

Further variables in Equatlon (12. 53) are the modal mass m_
and the modal stiffness k of the n" mode. These parameters
are defined as follows:

* T
m, =6, -M-¢, (12.56)
* T 2 *
k., =¢, - K-¢, = o -m; (12.57)
o,:  n'"modal circular frequency of the MDOF system

The modal participation factor I', is a measure for the contribu-
tion of the n-th mode to the total response of the system. It is de-
fined as follows:

0. M1
0, Mo,

In addition the so-called effective modal mass of the n!" mode
is defined as:

r (12.58)

n

mseff F m (12.59)
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Unlike the modal mass m and the modal participation factor I'
the effective modal mass m . is independent of the normaliza-
tion of the eigenvectors. The following equation holds:

Z mrl off = Z m, = m., (12.60)

n=1 n=1
where m,, is the total mass of the dynamic system.
The effective modal height hZof the n'" mode is:

0 N
n

h:ZL—withL > hi-m;- 05, and L, = ¢, - MU (12.61)
n

.

ji=1
- Significance of the effective modal mass m

The effective modal mass m_ . is the lumped mass of a single-
storey substitute system which is subjected to a base shear
force V, equal to the nt" modal base shear force of a multi-sto-
rey system.

If in addition the helght of the single storey substitute system with
the lumped mass mn ¢ €quals the modal height h , the single-
storey system is subjected to a base moment Mbnwhlch is equal
to the n!" modal base moment of the multi- -storey system.

The following holds:

(12.62)

M =z
;.’._'7
=

— * _
Vbn = My e Spa, n

—
I
—_
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Mb = 1’1’1:’ eff ° Spa’n * hn = z ftjn ° hJ (1263)

n

where S, , is the pseudo-acceleration of the n'" mode.

 Distribution of the internal forces

If the internal forces of the entire system are to be determined,
the modal equivalent static forces fjnshould be computed first:

f, = Sy Span (12.64)
where
A [ (12.65)

The excitation vector s_ is defined according to equation (12.66)
and specifies the distribution of the inertia forces due to excita-
tion of the n' mode:

s, = T. Mo, (12.66)

s, is independent on the normalization of the eigenvector ¢ and
we have that:

(12.67)
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* MDoF system with eigenmodes and equivalent SDoF systems

MDOF Eigenmodes and
System equivalent static forces
m
o™ - f31 — — f32 f33
hg ‘
-+ <>m2 21 —] f22 — — 23
h | hg h3 ‘ ‘
m
N () ! hy f11 -ﬂ f12_ﬂ f13 _ﬂ
hg hy
El
- —4
Vb +— Vbl +— Vb2 — Vb3 —
X My X/ Mpi X/ Mp2 X/ Mp3
MDOF Set of equivalent SDOF systems
System and equivalent static forces
m1*=2.180m
o™
mj*Sag
hg
m
<+ O™ my*=0.646m
£ m3*=0.174m
h | hs 5 3
[N *g
4 C)ml ) & m2%5a2 o i}
= N § m3*Sa3
hs T T r'
EI EI* x| ED* x lEl3*
- - =] =
Vb «— Vbl — Vb2 +— Vb3 —
X My X/ Mo X/ Mp2 X/ Mb3
12 Seismic Excitation Page 12-22



Course “Fundamentals of Structural Dynamics” An-Najah 2013

12.3 Response spectrum method

12.3.1 Definition and characteristics

If the maximum response only and not the response to the entire
time history according to Equation (12.55) is of interest, the re-
sponse spectrum method can be applied.

The response spectrum can be computed for the considered
seismic excitation and the maximum value of the modal coordi-
nate q, ,,,, ¢an be determined as follows:

* 1 *
In, max = In- Sa(@p,8y) = Ty - =+ S, (0,,C)) (12.68)
(DH
where:
I modal participation factor of the n-th mode

sd((on,g;;): Spectral displacement for the circular eigenfre-
quency o, and the modal damping rate (.

Spa(mn,cr’;): Spectral pseudo-acceleration for the circular ei-
genfrequency o, and the modal damping rate C;’;.

The contribution of the n!™ mode to the total displacement is:

u (12.69)

n, max (I)n "9, max

The maxima of different modes do not occur at the same instant.
An exact computation of the total maximum response on the ba-
sis of the maximum modal responses is hence impossible. Dif-
ferent methods have been developed to estimate the total max-
imum response from the maximum modal responses.

Course “Fundamentals of Structural Dynamics” An-Najah 2013
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» “Absolute Sum (ABSSUM)” Combination Rule
N
U max S D |9in* dn, max (12.70)
n=1

The assumption that all maxima occur at the same instant and in
the same direction yields an upper bound value for the response
quantity. This assumption is commonly too conservative.

 “Square-Root-of Sum-of-Squares (SRSS)” Combination Rule

2

1 max JZ (q)m qn max (12-71)
n=1

This rule is often used as the standard combination method and
yields very good estimates of the total maximum response if the
modes of the system are well separated. If the system has sev-
eral modes with similar frequencies the SRSS rule might yield
estimates which are significantly lower than the actual total max-
imum response.

+ “Complete Quadratic Combination (CQC)” Combination Rule

<) (k)
Y max ~ Z z Ui, max ka Ui, max (1272)
j=1lk=1
where
ui(jznax and u1 nax are the max. modal responses of modes j and k

P is the correlation coefficient between nodes j and k:
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B 8,/CiC, (G + 18 )r/2 : _ O

Pix = e > > 22W|thr——

(1 =122 +48C,r(1 +12) +4(C2 + (D i
(12.73)

This method based on random vibration theory gives exact re-
sults if the excitation is represented by a white noise. If the fre-
quencies of the modes are well spaced apart, the result converge
to those of the SRSS rule. More detailed information on this and
other combination rules can be found in [Cho11] Chapter 13.7.

 Internal forces

The aforementioned combination rules cannot only be applied
on displacements but also on internal forces.

The maximum modal internal forces can be determined from
equivalent static forces

F - K-u (12.74)

n, max n, max’

which, as a first option, are computed from the equivalent static
displacements. Alternatively, the equivalent static forces can be
determined from the inertia forces:

Fomax = So° Spa(@,,8) = T,M6, - S (0,80 (12.75)

with s being the excitation vector which represents the distribu-
tion of the inertia forces of the n" mode (see Equation 12.67).

Attention:

It is wrong to compute the maximum internal forces from the
maximum displacement of the total response u_,. .
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* Number of modes to be considered.

All modes which contribute to the dynamic response of the sys-
tem should be considered. In practical applications, however,
only those modes are considered which contribution to the total
response is above a certain threshold. It should be noted that in
order to achieve the same accuracy for different response meas-
ures (e.g. displacements, shear forces, bending moments, etc.)
different numbers of modes might need to be considered in the
computation.

For a regular building the top displacement can be estimated
fairly well on the basis of the fundamental mode only. To esti-
mate the internal forces, however, higher modes need to be con-
sidered too.

According to Eurocode 8 “Design of Structures for Earthquake
Resistance” [CENO04] all modes should be considered (starting
from the lowest) until the sum of the effective modal masses
m, . Of all considered modes corresponds to at least 90% of
the total mass m,,. As an alternative, Eurocode 8 allows the de-
signer to show that all modes with m:; o > 0.05m, were consid-
ered in the computation.
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12.3.2 Step-by-step procedure

The maximum response of a N-storey building can be estimated
according to the following procedure:

1) Determine the properties of the MDOF system

e Choose DOFs
» Determine mass matrix M and stiffness matrix K.
- Estimate modal damping ratios

2) Carry out modal analysis of the MDOF system
» Determine circular eigenfrequencies ®, and eigenvectors ¢
2
(K-o,M)-0, =0
- Compute the modal properties of the MDOF system (M, K*)
* T * T
mn - (I)I'IM(I)H ’ k1‘1 - (I)HK(I)H
« Compute the modal participation factor I",
¢IM1
T
o, Mo,

3) The maximum response of the n-th mode should be deter-
mined as described in the following. This should be done for
all modes n = 1,2, ..., N which require consideration.

Fn

* For all periods T, and for the corresponding damping ratios C;
the spectral response S,(o,, {,) should be determined from the
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response spectrum for pseudo-accelerations. (The spectral dis-
placement S,(w,,C;) should be determined in the same manner)

» Computation of the maximum displacements

Uy max — ¢n ) 1—‘n ) Sd(o‘)n’cn)

« Computation of the maximum equivalent static forces
Fn, max _ Sn’ Spa(wn’ Cn) = /Mo, - Spa(o‘)n’ Cn)

* Computation of the maximum internal forces on the basis of the
forces F

n, max

4) Estimate the total response in terms of displacements and in-
ternal forces by means of suitable combination rules. Differ-
ent combination rules might be applied (ABSSUM, SRSS,
CQC).

Comment

In order to consider the non-linear behaviour of the structure the
equivalent lateral static forces F max €an be determined from
the spectral ordiqate Spa(®@y; Gy @) Of the design spectrum for
pseudo-accelerations:

Fomax = Sn Spa(@p, §oq) = TMO, - S (00,8, q) (12.76)

12 Seismic Excitation Page 12-28



Course “Fundamentals of Structural Dynamics” An-Najah 2013

12.4 Practical application of the response spectrum
method to a 2-DoF system

12.4.1 Dynamic properties

my
—
ky/2 ky/2
m,
—p W
k,/2 k,/2

Al < = a B

This 2-DoF system corresponds to the system presented in
Chapter 9 with the only difference that the 2 DoFs are swapped.

» Degrees of freedom (DoF)
Horizontal displacements u; and u, in correspondence of the
masses m; and m,

* Masses
Both story masses have unit value, i.e. m; = m, = 1, hence
the mass matrix M is:

Mlﬁlil[éﬂ (12.77)
2
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« Stiffness
The horizontal stiffness of each story is k = 1, hence the stiff-
ness matrix K is:

ki, k
K = | 11712 = 1 -1 (12.78)
Ky, kyy -1 2
1. unit displacement u;, = 1 u=1
t—t Fi =Xk
u =0 -«
Fy=ky
e |
Location "2
Cause "l”f/

2. unit displacement u, = 1

uy=0
Fi=kp

Location "1"

u =1 Cause "2"
—
/ Fy=ky

= ]
+ Damping
Damping is small and is neglected, hence the damping matrix C is:
c=100 (12.79)
00
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12.4.2 Free vibrations

1) Matrix eigenvalue problem

K-oM)- [*1] = (12.80)
,
The nontrivial solution for the eigenvector ¢ = Fl} #0 exists if
the determinant is equal to zero: ¢y
det(K — o°M) = 0 (12.81)
2 -0 -l
det(K— o M) = det =0 (12.82)

12—

This leads to the quadratic equation in o

(1-0°) - 2-0)-(-1)-(-1) = 2-30°+o '~ 1=0 (12.83)

or

o' —307+1=0 (12.84)
The solution of the quadratic equation yield the eigenvalues:

0 = 3“29‘4 - 3¢2ﬁ (12.85)
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2) Natural modes of vibration and natural frequencies

. 2 . .
For each eigenvalue o~ a natural mode of vibration and a natu-
ral frequency can be computed.

* Fundamental mode (first natural mode of vibration)

The smallest eigenvalue co? -3 _2“/3 leads to the

1. circular natural frequency o, = (# = 0.62 (12.86)

When the eigenvalue mf is known, the system
2 Oy _
(K- o M) - =0 (12.87)
9,

can be solved for the corresponding vector bu (fundamental
mode) to within a multiplicative constant: 3!

0} (12.88)
0

1——2 -1 ‘ q)ll _ |:
33— NERLS
The first row yields following equation:

2_(37_@%—14)21 -0 (12.89)
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Normalizing the largest coordinate of the eigenvector to unity
(q)ll = 1), (DZI becomeS:

%“T‘ﬁ) 0y, = 0 (12.90)

or
0y = —[—55‘—1 ~ 0.62 (12.91)

Hence the first natural mode of vibration is:

¢ =1

¢21:0.62 q)ll _ 1 _ 1
SAREn.

21
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* Higher mode of vibration

The largest eigenvalue wg =3 +2ﬁ leads to the

2. circular natural frequency o, = /3 +2ﬁ = 1.62 (12.93)

In analogy to the fundamental mode, the second mode of \éibra-
tion can be computed introducing the second eigenvalue , into
the system of equations:

L35
2 %] - H (12.94)
3+ﬁ ¢22 0
2

-1 2 -

The first row yields following equation:

2-(3 + 4/5)

5 ¢p—1¢,, =0 (12.95)

Normalizing the largest coordinate of the eigenvector to unity
(¢22 = 1)5 (I)lz becomes:

%-—(—32+—ﬁ—)¢12—1 -0 (12.96)
or:
-2 1-./5
= = = —0.62 (12.97)
=TT ET 2
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Hence the second natural mode of vibration is:

t (I)ll =-0.62

3) Orthogonality of modes

In the following the orthogonality of the modes of vibration
should be checked.

Hence, following matrix of the eigenvectors is needed:

J5-1

1 N
O - [q)n ¢1z] _ 2 (12.99)
0y 02 J5-1 1

2
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* Orthogonality with respect to the mass matrix

The modal mass matrix M* is:

AR LRS!
M* = CDTM(I) _ 2 {l O}_ 2
_«/371 . 01 J5-1 |
2 2
1 —ﬁ 1 1 7_[5 — 1
_ 2 | 2
W51 Sl
2 2
1+(ﬁ 1)2 0
_ 2 _ {1.38 o}
J5-1)2 0 1.38
R
(12.100)
i.e. the matrix M* is diagonal.
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* Orthogonality with respect to the stiffness matrix

The modal stiffness matrix K* is:

| A5t | 5t
K* 2 [1—1, 2

«/571 . -1 2 ﬁ,l

I
S
—
~
S
Il

D 1+ (5 =

SERE —[52‘1+2 —ﬁz‘l 1

l(ﬁl)”(ﬁz_l)z ﬁ—1+(ﬁ2—1)21

2

B (B 2o (B

2

(12.101)

Computation of the single elements of K*:

2
ko = 151+t 5 2B g 55

(12.102)
VT BV N 2./5-2+5-2./5+1-4
k*1, =75 +( 2 )_1: 4 -0
(12.103)
k*,, = k*, =0 (12.104)
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2
k*,, = 2+(ﬁ_1)+(%) = 1+ﬁ+5_24¢=3.618
(12.105)

K* = {0%28 3218} (12.106)

i.e. the matrix K* is diagonal.

12.4.3 Equation of motion in modal coordinates

The equation of motion in modal coordinates of a system without
damping (C* = 0)is:

M* -+ K* - q = —L-ii,(t) (12.107)

where:

L
L = [ 1] ,and q = [Ch] is the vector of the modal coordinates
L, dz

Computation of the elements of the vector L:

J5-1

1 P —
Lo M- 2 | [1o] [1] _|1.62
ﬁ—l 01 1 0.382
2
(12.108)
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The influence vector 1 represents the dis- =1
placement of the masses resulting from the
static application of a unit ground displace-

mentugz 1: e
=1 (12.109)
|
The substitution of L into the equation of A X
motion in modal coordinates u =1
M*. . g+K* - q = —L-ijg(t) (12.110)
leads to:
138 0 | |41, [0528 0 | [dif _ _|1.62 'fig(t)
0 1.38) |4, 0 3.618) |q, 0.382
(12.111)

Checking the circular natural frequency computed using modal
coordinates against the results of Section 12.4.2:

k %k
o, = |- = [9328 _ 46 okl (12.112)
Pooymy 1.38
k *
o, = |2 = 38 _ 6 ok (12.113)
\ My, 138
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* Additional important modal quantities

The modal participation factor I' | is defined as:

LII
r - (12.114)

n %
mIl

and substituting L, and m_* into this definition gives following
values for I';) and I',:

Ly 162
Ly 0382
FZ = II? = m = 0.28 (12116)

The effective modal mass is defined as:
my e = Ty my (12.117)

and substituting I', and m_* into this definition gives following
values for m; .- and m; g

mj e = Tj-my = 1.172-1.38 = 1.894 (12.118)
mj o = I5-mj = 0.282- 1.38 = 0.106 (12.119)
my et my o= 189440106 = 2.000 OK! (12.120)
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12.4.4 Response spectrum method

The 2-DoF system analysed in the previous Sections shall be
used to illustrate the response spectrum method. For this reason
real masses and stiffnesses shall be assumed. The seismic ac-
tion on the 2-DoF system is represented by the elastic response
spectrum of the “El Centro” earthquake.

1) Model
my Similar to Section 12.4.1,
— > W however with a new definition
of masses and stiffnesses:
k,/2 k,/2

m, = m, = lkg

—» W Hence, the mass matrix is:

ky/2 ky/2 R LT 10lyg
0 m, 01

AT A L,

The stiffness chosen for each story is k; = k, = k = 100 N/m
and an appropriate units transformation leads to:

k = 100 N/m = 100 kgm/s?m~! = 100 kg/s? (12.121)
Hence, the stiffness matrix is:

ki k
Ky Kyo|  |=100 200
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2) Natural modes of vibration and natural frequencies

The results of the previous Sections computed using unit mass-
es and unit stiffnesses shall be multiplied by the factor:

2
/k _ |100kg/s” _ 505! (12.123)
m lkg

* Fundamental mode

Natural frequency: ®, = 0.62- J100s™ = 6.2 Hz
Natural period:

* Higher vibration mode

Natural frequency: 0, = 1.62- J100s ' = 16.2 Hz
Natural period:

The eigenvectors are dimensionless quantities and remain un-
changed:

1 f—“/g _ |
o =[O %) _ 2 (12.124)
021 02y J5-1 1
2
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3) Modal analysis

Equation of motion in u, -u,-coordinates (without damping):

M-ii+K-u=-M-1-iit (12.125)
{1 o}kg_ [ul} . {100 —100}kg/52‘ [111] _ _[1 o}kgH iy
01 iy |~100 200 u, 01 |1
(12.126)
Variables transformation in modal coordinates q, and q,:
u=®q (12.127)
where:

®: Modal Matrix, i.e. the matrix of the eigenvectors

The equation of motion in modal coordinates q; and q, (without
damping) is:

M* - G+K* q = —L-ii,(t) (12.128)
1380 |y, [ 1528 0 L 2 a1 - 11621 g
0 138 |4, |0 362 Q| 0382

(12.129)

yielding the equation of motion in modal coordinates of two inde-
pendent SDoF systems.
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4) Peak modal response

The peak modal response of both vibration modes can be com-
puted like in the case of SDoF systems using the spectral value
given by the relevant response spectrum.

The peak value of the modal coordinate q, is:

L
ql,max = 1,?1* ’ Sd(mla Cl) = r] ! Sd((!)l, Cl) (12130)

where:
Sq(m, §,): spectral displacement for a natural frequency
o, and a damping {, (here {; = 5%)

If an acceleration instead of a displacement response spectrum
is used, then the peak value of the modal coordinate q, is:

Ll 1 Fl
91, max ~ * 2 Spa((l)l, Cl) = - Spa(wl’ Cl) (12131)

m
Lo ON

where:

S,a(®y, ;)1 spectral pseudo-acceleration for a natural fre-
quency o, and a damping {, (here {; = 5%)
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The spectral values given by the elastic acceleration response
spectrum of the “El Centro” earthquake for the periods T, and
T, are:

Spa = 425m/s2  and (12.132)
Spay = 7.34 m/s? (12.133)
10 ' '

C=5%

Pseudo acceleration [m/s’]
(@)}

T,=0.39s ' T1=1.02

001 0410 1,00 " 10.0
Period [s]

1.62kg 1

= . 4.2 2 =0.1 12.134

_ 0.38kg 1

: - 7.34 2 =0. 12.1
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5) Inverse transformation

The peak deformations and internal forces belonging to each mode of vibra-
tion in the original reference system are obtained by multiplying the relevant
eigenvector with the corresponding peak value of the modal coordinate.

* Fundamental mode

1 _ _ 1| _ [130
Upaw = 91 max - @3 = 0.130m - {0.62} = {81}mm (12.136)
£~ g.u® = [100 =100 |0.130] _ | 13.0-8.1 | _ |49\
e 100 200 (0081  |-13.0+162] |32
(12.137)
Alternatively (allow an approximate consideration of nonlinearities):
s, =T,Mo, = 117 |10 L | = | L7 (12.138)
01/ ]0.62 0.725
£ — s s =425 L7 - 149y (12.139)
max b e 0725  [32
f(lllzmx:4‘9N
T — ufV = 130 mm
V=49N
f(zll)nax =32N )
T ——p e uy’ =81 mm
V2: 81N
]
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* Higher vibration mode

ol = Uy gy 0y = 0.008m - | 7002 = 7501y (12.140)
: 1 1 8.0
f(2) _ K_u(2) _ |100 —100] ~0.005] — |-05-08] _ |-13|y
max max-— 1100 200 |0.008 | 0.5+1.6 2.1
(12.141)
Alternatively (allow an approximate consideration of nonlinearities):
s, = [,M¢, = 0.28 - |1 0].|70:62) — |=0.173 (12.142)
01 1 0.28
£ s =73470173) = =13y (12.143)
maxo el 0.28 2.1
2 =_13N
[ — u? =-5.0 mm
E Vi=-13N
@ =21N
Zmax T ) = 8.0 mm
V,=08N
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6) Combination

The total peak response is obtained from the peak response of
the single vibration modes using e.g. the SRSS combination rule
(SRSS = Square Root of the Sum of Squares).

* Peak displacements

|
~
~
=
=

2
= o™ = J(130mm)? + (-5mm)* = 130mm

ul,max

(12.144)

2

3 @™’ = J(81mm)*+ (8mm)® = 81mm

k=1

(12.145)

In this case the total peak displacements are almost identical to
the peak displacements of the fundamental mode. The relatively
small contributions due to the second vibration mode basically
disappear because of the SRSS combination rule.
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* Peak sectional forces (Shear force V)

Upper shear force:

2 2
Vi max = J(4.9N) +(~1.3N)" = 5.IN V=SIN
(12.146)
Lower shear force:
V) max = «/(8~1N)2+(0.8N)2 = 8.IN V,=8.IN

(12.147)

Compared to the peak sectional forces due to the fundamental
mode, the total peak sectional forces show a slight increase in
the upper story of the 2-DoF system.

Pay attention to following pitfall!

It is wrong to compute the total peak sectional forces using the
total peak displacements:

V1 max # 100N/m - (0.130m - 0.081m) = 4.9N (12.148)

V) max # 100N/m - 0.081m = 8.1N (12.149)

The sectional forces would be underestimated.

Course “Fundamentals of Structural Dynamics” An-Najah 2013

12.4.5 Response spectrum method vs. time-history analysis

1) Model

11y
ki/2 ki/2
My
—
k,/2 ko/2
Case study 1 Case study 2
Masses: m; = 1.0kg | Masses: m,; = 0.1kg
m, = 1.0kg m, = 1.0kg

Stiffnesses:  k; = 100N/m | Stiffnesses:  k; = 10N/m

k, = 100N/m k, = 100N/m
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Case study 1 corresponds to the model analysed in Section
12.4.4. Case study 2 represents a dynamic system where the
second vibration mode is important.
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2) Results

* Dynamic properties

Course “Fundamentals of Structural Dynamics”

An-Najah 2013

* Demand

Case study 1

Case study 2

Case study 1 Case study 2

Periods: T, = 1.02s Periods: T, = 0.74s

T, = 0.39s T, = 0.54s

Eigenvectors: Eigenvectors:

0 =1, 0y =062 |10 ¢ =1, 0y =027

20 =1, 0y =162 |20 0 =1, by =037

Part. factors: I'; = 1.17 Part. factors: T'; = 2.14

r, = -0.17 T, = -1.14

Displacements:

1: A = 0.129m
2: A = 0.005m
Sum: A = 0.134m
SRSS: A = 0.130m

Time-history: A = 0.130m

Displacements:

1: A = 0.130m
2: A = 0.072m
Sum: A = 0.202m
SRSS: A = 0.148m

Time-history: A = 0.165m

* Note that in this case the eigenvectors are normalized to yield
unit displacement at the top of the second story. Therefore, the
eigenvectors and the participation factors of case study 1 differ
from the values obtained in previous sections.
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Upper shear force:

Upper shear force:

SRSS: V = 5.10N SRSS: V = 1.36N
Time-history: V = 5.69N Time-history: V = 1.5IN
Lower shear force: Lower shear force:

SRSS: V = 8.05N SRSS: V = 440N
Time-history: V = 8.44N Time-history: V = 492N
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* Time-histories: Case study 1

20_ T T T T | T T T T | T T T T | '_ T T T ]

L First mode |

‘T 10 /\ —
_2. - -
= C ]
go-mﬂA A NAAAAANND D o AAA
g C \/ VV VUV \/ Y \/ \J Y V \YAR
2 [ i
A —10 —
-20L [ S ]

0 5 10 15 20

20 L ]

- Second mode

E 10 —
O, L |
= C ]
S C ]
§ of ]
& C ]
o L .
8 -10F .
-20L [ B ]

0 5 10 15 20

20 ' T T T 1 S ]

L um -

T 10l /\/\ ]
O, L |
= C ]
g 0'/\/\(\ /\/\/\/\/\/\/\/\/\/\,\v,\v/\ 1\
g C \} VAV AAVA'AVARV/ \/\/v_
s I )
a —10_— .
-0l . . ]

0 5 10 15 20

Time [s]
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» Time-histories: Case study 2

20 T T T T T T T T T T T

First mode

10

I AA\)/\U(\ A /\/\f\/\/\/\AA/\E[\/\I\MM/\AA

Displacement [cm]

A
o
LI L L

Second mode

SRR

/\ﬁ/\l\ /\/\/\/\AI\/\/\,\/\I\/\MI\/\/\I\ Ao A A AA

Displacement [cm]
o

TV AT A
10k | ]
i [ ]
L I i
-20 L1 1 1 !
0 5 10 15 20
20_ T T T T T
C Sum

10'_/\/\i A AAAAAAAAA

Al LA N
e

>||||||

Displacement [cm]
o

Peak values don’t occur at the same time!
' ' ' ' | ' ' ' ' | ' ' ' ' | ' ' ' '

0 5 10 15 20
Time [s]
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* Time-histories: Summary
Blank page

20 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1

Case study 1 |

-
o
LI T T

A/\/\/\ ANMMNAN A a AN
\jv IRAVARYAAVAATRVASEEGAAAY

Displacement [cm]
o

o oYy e First mode i
L Second mode ]
- Sum 1
-20 AT R N (NN T S T TN N N SO TR SO NN SO S N
0 5 10 15 20
L L

N
o
LI T T

Displacement [cm]
o

A
(=]
LI 7 L

U First mode N
U ---------- Second mode ]
Sum _
-20 1 1 1 1 | 1 1 1 1 | 1 1 1 ! | ! ! ! !
0 5 10 15 20
Time [s]
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13 Vibration Problems in Structures

13.1 Introduction

There are more and more vibration problems in structures
because:

» Higher quality materials with higher exploitation
- slender constructions
- smaller stiffnesses and masses

* More intensive dynamic excitations

* Increased sensitivity of people

Nevertheless vibration sensitive structures are
often designed for static loads only

Goal of this chapter

* Give an overview of possible causes of vibration problems in
buildings and of potential countermeasures

 Description of practical cases with vibration rehabilitation

13 Vibration Problems Page 13-1

Course “Fundamentals of Structural Dynamics” An-Najah 2013

13.1.1 Dynamic action

a) People-induced vibrations

Pedestrian bridges

Floors with walking people

Floors for sport or dance activities

Floor with fixed seating and spectator galleries

High-diving platforms

b) Machinery-induced vibrations

- Machine foundations and supports
- Bell towers

- Structure-borne sound

- Ground-transmitted vibrations

c) Wind-induced vibrations
- Buildings
- Towers, chimneys and masts
- Bridges
- Cantilevered roofs

d) Vibrations induced by traffic and construction activity

- Roads and bridges
- Railways
- Construction works

13 Vibration Problems
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Bachmann H., Weber B.: “Tuned Vibration Absorbers for
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und 261/1 (2003) Einwirkungen auf Tragwerke”. SIA Doku-
mentation D0188. Zirich 2006.
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mentation D0198. Zirich 2003.

SIA: “Dynamische Probleme bei Briicken- und Hochbauten”.
SIA Dokumentation D0138. Zirich 1996.
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Fussstampfen und Wippen”. IBK Bericht Nr. 7501-4, 1987.
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13.2 Vibration limitation

13.2.1 Verification strategies

* Frequency tuning

o.oo, |
0.01

-
o

Trasmissibility TR
N W h~ O O N 0 ©

-

- High tuning (subcritical excitation)
- Low tuning (supercritical excitation)

* Amplitude limitation
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13.2.2 Countermeasures

» Change of the natural frequency

Strategy Effects
b
- Stiffness: I~bh3}:>f~ﬁ~h
= T Mass: A ~bh A
-
o [El
L EeX . .
£, =—" J: (u = distributed mass)
l - J 1o An
- 3.93°  [EI
I - =g, - —2[_ _ 1565, | (2.45-EI)
\ \ | 2L " '
| | 473 [EI
I - o5 - —2F ~ 227t | (5.14-EI)
' ’ o2mLt VM ’
£—m 1t2 EI
L/2 for=———=" _:4fa,1(16'EI)
2n(L/2)" VM

* Increase of the damping
- Installation of dampers or absorbers
- Plastic energy dissipation

* Tuned Mass Dampers
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13.2.3 Calculation methods

» Computation of the natural frequencies

The natural frequencies of structures have to be determined by
means of realistic models. Approximate formulas that are often
found in design codes and literature shall be checked carefully.

« Computation of the Amplitude

If the frequency of a harmonic of the excitation coincides with a
natural frequency of the structure (resonance), the maximum de-
flection of the structure can be estimated as follows (See Chap-
ter 5):

F
u, = f~V(0))-cos((ot—¢) (13.1)

for o = o, we have V(o) = 1/(2{) and:

F
Unax = 72 (13.2)

1
2
The maximum velocity and the maximum acceleration can be
determined from Equation (13.2) as follows:

F

. 1
umaX:(x)-umaX:(x)-f-z—C (13.3)
F, 1
ﬁmax = (!)2 * Umax — (02 . —kg . E—C (134)
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The amplitude of the nt™ harmonic component of a force gener-
ated by people excitation is proportional to the mass of the per-
son(F, = G-a, = g-M-o,, see Equation (13.8)).

y » g Mo, 1k geMo, 1 Mg

Upax = @ - Kk 2_@_;1 K '2_C—m' 2(_, (135)
L Mgy

i = e (13.6)

 Remarks

- A soft structure is more prone to vibration than a rigid one.
See Equations (13.2) to (13.4).

- The acceleration amplitude is directly proportional on the
ratio of the mass of the people to the building mass.
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13.3 People induced vibrations

13.3.1 Excitation forces

In Chapter 6 “Forced Vibrations” it has been already mentioned
that excitation due to people, like e.g. walking, running, jumping,
and so on, can be represented as Fourier-series:

F(t) = ay+ Y [a cos(nmyt) + b, sin(nwyt)] (13.7)
n=1
Equation (13.7) can also be represented in a form according to
Equation (13.8):
N
F() =G+ Y G-o,-sin(n-2nfy-t—0,) (13.8)

n=1

Where:

G = Weight of the person

- o, = Fourier coefficient for the n!" harmonic

- G-, = Amplitude of the n!" harmonic of the excitation force
- f, = Step frequency of the excitation force

- ¢, = Phase shift of the n'" harmonic (0, =0)

- n = Number of the n!" harmonic

- N = Number of considered harmonics
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The steady-state response of a SDoF system under periodic ex-
citation can be computed in analogy to Chapter 6 as:

N
u(t) = uy(h)+ 3 uy(t) (13.9)
n=1
Where
uy(t) = CE} (Static displacement) (13.10)
.t = G-kocn (1= By)sin(noyt —2¢g)—2§[3nc:)s(n0)0t—¢n) (13.11)
(1-B,) +(2EB,)
o, = 218, By = (13.12)
* Measurement of forces (Example)
475m . 475m
) 8.59m 3 110.06m B
‘! ’!A } !
[ |
| w1
0f5y " s o! B +020
lF[;B DB
2 i FeV
7 A f A s
| Imin =11.20 |
L T lmax=18.75 — R
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» Jumping (left) and walking (right), see [BB88]
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» Walking (see [Bac+97] Figure G.1) » Jumping (see [Bac+97] Figure G.2)
1.5 — 5.0 :
- Both feet Fomax = l;pG 6
/ a0 T\ P N
£ /
g 1.0 I" -g - \
=" .
& Right foot 3 tP = Contact time
805 \ v 7/ S 20 T, = Period
e / I
|
[}
1.0 G =0.72kN
\TLeft foot ’/ _______________________ L
0 \ ! 0 t Tp
1 | 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 01 02 03 04 05 06 07 08
Time [s] Time [s]
» Clapping (see [Bac+97] Figure G.3) » Jumping: Fourier amplitude spectrum (see [Bac+97] Figure G.2)
3) A
Ez‘- < 15 1.38 kN
zz = va
§ 8 WWT\/WWW 8
(=]
w (Y]
r ©
. . . . 2 1.0
0 1 2 3 4 5 6 g
Time [s] ©
b) 40 8
Z 30} 2 054
g 2
g 20 - 3
g. L.
E 10+ 0 | -
A o .
0 . " C f 2f, 3f 4f, 5f
0 10 20 30 40 50 P P P . P P
Frequency [Hz] Frequency [pr]
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* Remarks regarding Table G.2

- Coefficients and phase angles represent averages.

- Phase angles have strong scattering and therefore, in
many cases, it is difficult to provide reasonable values. In
such cases (e.g,. running and dancing) in Table G.2 no val-
ues are specified.

- Decisive are cases in which resonance occurs. In such
cases the phase angle no longer plays a role.

- Coefficients and phase were checked and discussed inter-
nationally.

13.3.2 Example: Jumping on an RC beam

Here the same example as in Section 6.1.3 is considered again:

E()

—H
—
- H

900

480

Stirrup D8, s=200

/ = \ 6b22
Tendon 22 D7, P,y = 705 kKN
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e RC Beam

The RC beam has a length of 19 meters. The natural frequency
is thus:

f = 2Hz. (13.13)
» Excitation

Here “jumping” is described by means of the Fourier-series giv-

” “

en in Table G.2. In Section 6.1 “periodic excitation”, “jumping”
was described by means of a half-sine function.

Jumping frequency: f, = 2Hz (13.14)

Contact time: t, = 0.16s (phase angle computation)
(13.15)

Weight of the person: G = 0.70kN (13.16)

* Results
Excel Table: U, = 0.043m (13.17)
. _ _F 1 _18-070 1 _

Equation (13.2):  u,,,, T 536 5 oo~ -042m

(13.18)

 Remarks

- Shape of the excitation “similar” as half-sine

- Maximum deflection very close to the solution obtained by
means of the half-sine function
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 Excitation 13.3.3 Footbridges
35 === Static component (n=0) * Frequency tunlng
3,0 ===First harmonics (n=1) N . . .
”s —Socond harmornics (n=2) - Vertical: Avoid natural frequencies between 1.6 and
' / / S 2.4Hz. In the case of structures with low damping (Steel),
3 20 | avoid also natural frequencies from 3.5 to 4.5Hz.
I ,\ ,\ - Horizontal transverse: Avoid natural frequencies be-
g 0'5 -— \ —A -— \ ‘ B tween 0.7 and 1.3Hz (absolutely safe: fi; 4 > 3.4Hz).
S . o J / - - - . H
2 o / \ / // \ / ) - Horizontal longitudinal: Avoid natural frequencies be-
tween 1.6 and 2.4Hz.
00 \_/ \ e
1.0 F « Amplitude limitation
1.5 _ . . . .
6 o1 02 03 04 05 06 07 08 o9 1 Calculation of the acceleration maximum amplitude.
Time (s)
2
. <Ca 0.5m/s” = 5%g (13.19)
* Response
» Special features of the amplitude limitation
0.0500 ‘ -
0.0400 rrstramentee ey - When walking or running, the effectiveness of people is lim-
===Second harmonics (n=2) H H H .
0.0300 F . ited, because the forces are not always applied at midspan;
'E' 0.0200 — harmom;S) EL,m, ¢ J7F(t) EL m, c J7F(t)
oy & o Vow n
S 0.0100 \\ / \ / System D - S S v/ | 3L/4 | La |
£ 0.0000 f -
8
< -0.0100
()
0 -0.0200 K K
-0.0300 Equivalent Cn Cn
-0.0400 F v SDoF system
-0.0500 M Mo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) Fu(t) = F(9) Fut) ~ 0.71F()
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- People need a finite number of steps in order to cross the
bridge (This limited excitation time may be too short to
reach the maximum amplitude)

1

o o
) )
T T

abs(u;) / up,,,
N
-

0.2 |

0 5 10 15 20 25 30 35 40 45 50
Cycle

- Not all people walk in the step (Exception: Lateral vibra-
tions — Synchronisation effect)

To take into account the specificities of the amplitude limitation,
sophisticated methods are available. From [Bac+97] the follow-
ing one is adopted:

a_  =4n £y o ® [m/s’] (13.20)
Where:

- y: Static deflection at half the span

- o Fourier coefficient

- ®: dynamic amplification factor
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60 , —

Q0P —

50 PAD
e ’{\0{1/
5 s
8 10 iSs
C
o 00l | —
£ 30 0.015 =
=  Toms T —
5 /// 002 |
L2 9 ]
5 %%/____ 0.03

—
5 1 S = 0.06
e
0 .
0 10 20 30 40 50

Number of cycles per span

The acceleration a_,, given in Equation (13.20) is the accelera-
tion generated by one person crossing the footbridge. If n people
are on the bridge at the same time, the maximum acceleration is

typically less than n-a_, because not all people walk in step
across the bridge.

The square root of the number of people is often
chosen as the multiplication factor, i.e. /n-a_,
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Example: “Walking on an RC beam”
« Situation
System F(t)

-+

Um, am

19000

Discretisation for FE Analysis

Fs(®  Fs()  Fo) Fo(t) Fi®) Fis(®) Fis(® Fig() Fo(t) Fo(t) Fa(t) Fas(t)  Farlt)
Ex(®)  Fu(t)  Fe(t) Fg(®) Fio(® Fia(® Fia®) Fig(®) Fig(t) Fyt) Fan) Fault) Fi(t) Fi(t)

AL

400 | | 18200 || 400

19000

- Stiffness at mid span: K, = 886kN/m
- Natural frequency: f, = 2Hz
- Damping: { = 0.017
+ Excitation
- Walking with f, = 2Hz according to Table G.2.
- Step length: S = 0.70m
- Weight of the Person: G = 1kN
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* Rough estimate of maximum displacement and acceleration

The maximum displacement, and the maximum acceleration can
be estimated by means of Equations (13.2) and (13.4):

Umaxst ~ K 386 0.001128m = 0.11cm (13.21)

Gop 1 _1.04 1

umax,] = Kn ZC = —é—8-6—mﬁ = 0.0133m = 1.33cm
(13.22)
u, = 011+133 = 1.44cm (13.23)
a_ = ou_ =21 2)> 00133 = 2.10m/s’ (13.24)
max max, 1 . . .

« Estimate of the maximum displacement and acceleration using
the improved method

The maximum acceleration is computed by means of Equation
(13.20) as follows:

Walking-velocity: v=S8-f,=07-2=14m/s (13.25)

Crossing time: At =L/v =19/14 = 13.57s (13.26)

Number of cycles: N = At-f, = 13.57-2 = 27 (13.27)

Amplification factor: @® = 23 (13.28)
From Equation (13.20):

A, = 411:2'22'%0.4023 = 1.64m/s’ (13.29)
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« Computation of displacements and accelerations by means of
the FE Programme ABAQUS

Displacements and accelerations are computed by means of
time-history analysis:

- Excitation
1.5 .
Both feet
/
/
-— /
.g’ / ,\
21.0 4 /
3 \ !
o \ /
© \ /
n } T Right foot
< \ /
805 1\ !
CRAY I H
w \ ]
\\ 1
\ TLeft foot /
0. \ '
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time [s]
1.6 ‘
1.4 —F1
w —F2
= 1.2
S 1 —F3
$ 1 F15
3}
= 0.8 HH —F28
2 I
b |
~ 0-6
[
2
o 04
[
0.2 |
0 i
0 2 4 6 8 10 12 14 16
Time [s]
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- Time history of the displacement

1.5 - - -
.E ‘ —Displacement at mid span
L1
£
= .
[
£
g o
8
[-%
2
T -0.5
©
2
T o4 |
s gL

-1.5

0 5 10 15 20 25 30 35
Time [s]

- Time history of the acceleration

40

2

‘ —Acceleration at mid span

-
(5]

-

e
3

o

Vertical acceleration a,, [m/s?]

5 10

15

20
Time [s]

25

30

35

40
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« Remarks

- The refined method and the time history calculations show
lower values compared to the rough method;

- The refined method and the time history calculations are in
good agreement;

- The time history of the displacement is not symmetric
compared to the time axis, because of the static compo-
nent of the displacement caused by the weigh of the cross-
ing person;

- The time history of the acceleration is symmetric com-
pared to the time axis, because there is no static compo-
nent of the acceleration.

* Swinging footbridge on the Internet

http://www.londonmillenniumbridge.com/

http://www.youtube.com
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13.3.4 Floors in residential and office buildings
* Frequency tuning

- If the excitation is generated by walking (f,,, =2.4Hz), the
following natural frequencies shall be exceeded:

Damping Natural frequency Remark
[Hz]
> 5% >5 Avoid resonance due.to the
second harmonic
< 5% >75 Avoid re_sonance du_e to the
third harmonic

* Amplitude limitation

- Calculation of the acceleration maximum amplitude

<ca. 0.05m/s” = 0.5%¢g (13.30)

amax

- Because of the many non-structural components (wallpa-
per, furniture, suspended ceilings, technical floors, parti-
tions, ....) it is difficult to estimate the dynamic properties of
the floors.

- Where possible measure the dynamic properties.
Response of people to vibrations

The sensitivity of people to vibration depends on many parame-
ters:
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- Position (standing, sitting, lying) » G2 limit for vibrations parallel to the spinal column
- Direction of the action compared to the spinal column 20 1 POz
15 T
. . . . T |
- Activity (resting, walking, running, ...) el | oA an
. . 8.0 AT
- Type of vibration 63 RS- Z
50 T
- 2% T T RS T IV ZT
% 25 =2 I 16 min ZZEyat %
L Frequency 1 to 10 Hz | Frequency 10 to 100 Hz 520 T T TN T Em
Description 2 & 18 \ R
Amax [M/s9] Vimax [M/s] g 1 i = am
2 05 | = L
Barely noticeable 0.034 0.0005 8 os S~ s ! |
Clearly noticeable 0.1 0.0013 o \ I~ G RN
Disturbing 0.55 0.0068 osts |- T - |
Not tolerable 1.8 0.0138 oz e RN
oree P b
Vertical harmonic vibration action on a standing person. Accepted averages; scat- 0.1 : ‘ .
ters up to a factor of 2 is possible (from [Bac+97]) %04 %%6" 10 %6 27257 1%0 *%63 #%10 P%16 20 2570 P oo 0 H2
» G2 limit for vibrations transverse to the spinal column
* ISO 2631 standard
20 — 1 T ] T 17T ,.A T ‘
A A
1 T 2 10 I ' ] ‘ - A
ag = TIoa (t)dt (13.31) oo 1/ rav.s
’ o | | | | _—
g - SR Aras e e d
Where T is the period of time over which the effective accelera- g 3 o T ARy Ay Ay ™
tion was measured. F20 o A AN
& 1.6 ‘ ! 16 min s L L |
N e A P P
3 limits are defined: QR N I R g A T
FyEiEeEn et zsaratatintts
- G1: Reduced comfort boundary < oa ‘T‘ =LY #A | i N i ] |
. - 0.315 | ‘4!1 i T ™
- G2: Fatigue-decreased proficiency boundary ~ 3 x G1 o2 | p—:h v | ﬁ-& ; IR J}
. [T 016 — ‘ : L1 . .
- G3: Exposure limit ~ 6 x G1 3:125\ | ] 1 . l ‘L H
0'32040'50.63031.01'25146 2.0 2.53.15"“0 5'06.3 8.010 12.516 20 2531.540 50 63 80 Hz
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13.3.5 Gyms and dance halls

Due to gymnastics or dancing, very large dynamic forces are
generated. This is readily understandable when the Fourier co-
efficients in Table G2 are considered:

- Walking: o, = 04, a, = 0.1, a; = 0.1
- Running: o, = 1.6, a, = 0.7, a; = 0.2
- Jumping: o, =19, 0, = 1.6, oy = 1.1

- Dancing: o, = 0.5, a, = 0.15, oy = 0.1
(however: a - many people moving rhythmically. b - certain
dances are very similar to jumping)

* Frequency tuning

- If the excitation is generated through jumping (f, ., =3.4Hz)
or dancing (f,,, = 3.0Hz ), then the following natural frequen-

ax —

cies shall be exceeded:
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Gyms Dance halls
Construction Natural frequency | Natural frequency
[Hz] [Hz]
Reinforced concrete >75 >6.5
Prestressed concrete >8.0 >7.0
Composite structures >8.5 >7.5
Steel >9.0 > 8.0

13 Vibration Problems Page 13-29

* Amplitude limitation

- Calculation of the acceleration maximum amplitude

80y < CA. 0.5m/s” = 5%g (13.32)

- Limits depend on the activity, if e.g. people are sitting in the
dance hall, as well, this limit shall be reduced.

- Because of the large forces that can be generated through
these activities, the dynamic characteristics of the structure
shall be estimated as precisely as possible.

13.3.6 Concert halls, stands and diving platforms

See [Bac+97].

13.4 Machinery induced vibrations

It is not possible to carry out here a detailed treatment of machin-
ery induced vibrations. Therefore, reference to [Bac+97] is
made.
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13.5 Wind induced vibrations

Wind-induced vibrations cover a challenging and wide area. It is
not possible to carry out here their detailed treatment. Therefore,
reference is made to the relevant literature:

* [Bac+97]

e Simiu E., Scanlan R.H.: “Wind Effects on Structures”. Third
Edition. John Wiley & Sons, 1996.

13.5.1 Possible effects

» Gusts: Stochastic effects in wind direction

- Turbulent wind with spatially and temporally variable wind

speed.
A Gradient
wind speed

N

©
— 3
—> Y

% u(z, t)
—> g 3

£

2

T

z
Wind speed u
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* Vortex shedding: Periodic action transversely to the wind di-
rection

- Vortex are not shedded left and right at the same time. If the
time-interval of the vortex shedding is equal to the oscilla-
tion period of the structure, resonance excitation occurs.

— <O T
— @ 5

Uorit = g (13.33)
Where
u,. Critical wind velocity
f,: Natural frequency of the structure transverse to the
wind direction
d: Diameter of the structure
S: Strouhal number (about 0.2 for circular cross sections)

» Buffeting: Periodic action in wind direction

- Vortex detached from an obstacle hit the structure
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» “Gallopping” and “Flutter”:
Unstable interaction between wind flow and structural motion

- Gallopping: Motion of the structure transversely to the flow
direction.

- Flutter: Combined flexural-torsional motion of the structure.

Work done by wind forces during flutter

Positive work t ﬁ Negative work

Phase difference 0°
Total work zero

tDirec(ion of vibration

ﬁ Lift force

Phase difference 90°

Positive work ITotal work positive

Profile of
Tacoma Narrows
bridge

unstable

=

o 01

0.1

Aerodynamic damping A"
Structural damping D'
o

stable

-0.2 ¢

Profile of
03t Severn bridge
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13.6 Tuned Mass Dampers (TMD)

13.6.1 Introduction

When discussing MDoF systems, in Section 11.1.3 a Tuned
Mass Damper (TMD) has already been discussed. However, in
that case zero damping was assumed for both the structure and
the TMD.

There it was possible to solve the equation of
motion simply by means of modal analysis.

Here the theory of the TMD with damping is treated. As we shall
see, the damping of the two degrees of freedom is a design pa-
rameter, and it shall be possible to chose it freely, therefore:

In the case of TMD with damping
modal analysis can not be used

« References

[BW95] Bachmann H., Weber B.: “Tuned Vibration Absorbers for
Damping of Lively Structures”. Structural Engineering Inter-
national, No. 1, 1995.

[Den85] Den Hartog J.P.: “Mechanical Vibrations”. ISBN 0-486-
64785-4. Dover Publications,1985. (Reprint of the original
fourth edition of 1956)
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13.6.2 2-DoF system

my g § % . i ur
my J7F(t) i o

The equations of motion of the 2-DoF system shown above are:

(13.34)

{mHﬁHJrcHuHJrcT(uH—uT)+kHuH+kT(uH—uT) = F(t)
mypip + cp(Up — ) T kp(up—upy) = 0

For an harmonic excitation of the type F(t) = Fjcos(ot), a possi-
ble ansatz for the steady-state part of the solution is:

ot t

uy = Uge'™,  up = Ue'™,  F(t) = Fpe'™, (13.35)

Using the complex numbers formulation allows a particularly el-
egant solution to the problem. The equations of motion become:
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[ 0 my +io(cy +op) + (ky + ko) Uy + [—ioe —kp]Up = Fyy
[-ioc; - kp]Uy + [- 0’ my +iocy + ke Uy = 0
(13.36)

To facilitate the solution of the system, some dimensionless pa-
rameters are now introduced:

Y = mp/my: Mass ratio (TMD Mass/Mass of the structure)
or = /kr/mp: Natural frequency of the TMD
oy = Jky/my:  Natural frequency of the structure without TMD

B = op/wy: Ratio of the natural frequencies

Q= 0/ oy: Ratio of the excitation frequency to the natural
frequency of the structure

Cr Damping ratio of the TMD

Cy: Damping ratio of the structure

Uy = F/ky: Static deformation of the structure

Substituting these dimensionless parameters into Equation
(13.36) we obtain:

[ Q%+ 2iQ(Lyy + BYEp) + (1 + B )1U + [ 2iQBYC, — ByIUp = Uy,
[ 2iQBYLy — B2¥IUy + [~ Q7+ 2iQByLy + BPy1U; = 0

(13.37)
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The system of equation can be easily solved using “Maple”, and
we obtain the following expression for the amplification function
U/ Uy

Uy (B’ Q") +2iQBL, (13.38)
Unp  [(B*- Q%) - Q°B*(1 —y) + Q1(Q° - 4BL, L)1 + 2i[(B” - Q1) Gy + (1 - Q7 — Q*y)BLy]

The complex expression given in Equation (13.38) shall now be
converted into the form:

z = X +iy or Uy = Uye(x +1iy) (13.39)

The displacement Uy, has therefore two components: 1) One
that is in phase with the displacement Uy, and 2) one with a
phase shift equal to n/4. From the vectorial sum of these two
components the norm of U; can be computed as:

Uyl = Uponx” +y° (13.40)

Equation (13.38) has however the form

. (A+iB)
Un = Unoger i) (13.41)

and must be first rearranged as follows:

(A+iB)-(C—iD) _ . (AC+BD)+i(BC—AD)

Un = Umcip)(cib) © U ey
(13.42)
2 2
U] = Uy 22+1}§2 (13.43)
_l’_
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Thus, the norm of the dynamic amplification function U/ Uy,
can be easily calculated:

U
UHO

B J (B’ -9 + 20BL)’
[(B° - Q%) - QB (1) + Q°(Q" ~ 4BLuLn)] +4L(B — @)y + (1- Q- Qy)BL, I

(13.44)

A similar procedure can be followed to compute the dynamic am-
plification function U,/ U,.

Next figure show a representation of Equation (13.44) in function
of Q for an undamped structure {,; = 0. Curves for different val-
ues of the parameters B, y and { are provided.

16
£r=0 ¢r=inf.
. y= 1/20
ﬁ _ /
= P
I
2
4 N\ \
/ G010 /@ \\
0 lllllllll LA A A 0 A i sd LAl A 0 i i aa) LA L A A A d i a a e s s s s a s b e n n a n i i ay
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
Q[
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13.6.3 Optimum TMD parameters

Based on observations and consideration at the previous image
Den Hartog found optimum TMD parameters for an undamped
structure:

¢ _ fy _ fy
Lopt = 1 4+mp/my  1+y

or Bop: = 1+y (13.45)

3mq/
e i N a (13.46)
8(1+my/my) 8(1+7)

These optimum TMD parameters can be applied also to lowly
damped structures providing good response results.

13.6.4 Important remarks on TMD

* The frequency tuning of the TMD shall be quite precise

* The compliance with the optimum damping is less important

* Design charts for TMDs shall be computed numerically

» TMDs are most effective when the damping of the structure is low
* It is not worth increasing the mass ratio too much

* Forlarge mass ratios, the amplitude of the TMD oscillations reduce

Meaningful mass ratios y are 3-5%

» The exact tuning of the TMD occurs experimentally, therefore
great care should be paid to construction details.
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« Amplification function with TMD: Variation of TMD frequency

50
No TMD (,=inf.)
a0 F v=0.01
¢y = 0.01
30 f
2
2
I
D 20
£,=0.98f; .,
10 L fT=fT,cpt
0 i N N
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Q[

« Amplification function with TMD: Variation of TMD damping

50
No TMD ({;=inf.)
a0 E v=0.01
¢y = 0.01
T30 F
2
2
I
D 20
CT=0'SCT,opt
10 F : #7 CT=§T,opt
0 i ' ' -
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
Q[-]
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» Design charts: Displacement of the structure (from [BW95])
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* Design charts: Relative TMD displacement (from [BW95])
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13 Vibration Problems Page 13-41 13 Vibration Problems Page 13-42



Course “Fundamentals of Structural Dynamics” An-Najah 2013

14 Pedestrian Footbridge with TMD

14.1 Test unit and instrumentation

The test unit is a post-tensioned RC beam. The beam is made
of lightweight concrete and the post-tensioning is without bond.
The dimension of the beam were chosen to make it particularly
prone to vibrations induced by pedestrians. A Tuned Mass
Damper (TMD) is mounted at midspan.

Elevation Footbridge (RC beam)
=
l - ] - ]
> ¥Tuned Mass Damper (TMD)
174 m
19.0 m
Cross-section Section A-A

J!

0.18

Concrete
block
(mass)

0.40 m

0.90 m

Spring Damper

On the test unit the following quantities are measured:

* Displacement at midspan
* Acceleration at midspan
» Acceleration at quarter point of the span

Course “Fundamentals of Structural Dynamics”
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Figure 14.1: View of the test setup.

14 Pedestrian Footbridge with TMD
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» Characteristics of the TMD
A close-up of the TMD is shown in Figure 14.2. We can see:

* The 4 springs that define the stiffness K of the TMD
» The 4 viscous dampers that define the damping constant ¢
the TMD

* The mass M, which is made up by a concrete block and two side
container filled with lead spheres. The lead spheres are used for
the fine-tuning of the TMD.

opt of

The properties of the TMD are given in Section 14.2.

Figure 14.2: Close-up of the TMD.
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14.2 Parameters
14.2.1 Footbridge (Computed, without TMD)
Modal mass: My = 5300kg

Modal stiffness:

Ky = 861kN/m

Natural frequency:  f,; = 2.03Hz
(Computed with TMD mass: f = 1.97Hz)

14.2.2 Tuned Mass Damper (Computed)

Mass: My = 310kg
. My
Mass ratio: U= — = 00585 = 585%
MH
Natural fi TSN P!
atural frequency:  f,, = T 92Hz

(Measured: f; = 1.91Hz)

Stiffness: Ky = Mp-(2nf,)° = 50.9kN/m

= 3B =014 = 14%
Copt 8(1 +u)3 0

(Measured: {; = 13%)

Damping rate

Damping constant: ¢, = 2¢,, /KMy = 1.18kNs/m
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14.3 Test programme

Following tests are carried out:

No. Test Action location TMD
1 |Free decay Midspan Locked
2 |Sandbag Midspan Locked
3 |Sandbag Quarter-point Locked
4 |Sandbag Midspan Free
5 |Walking 1 Person 3Hz Along the beam Locked
6 |Walking 1 Person 2Hz Along the beam Locked
7 |Walking 1 Person 2Hz Along the beam Free
8 |Walking in group 2Hz Along the beam Locked
9 |Walking in group 2Hz Along the beam Free
10 |[Jumping 1 Person 2Hz Midspan Locked
11 | Jumping 1 Person 2Hz Midspan Free
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14.4 Free decay test with locked TMD

Time history of the displacement at midspan

40t '
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20l |
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Figure 14.3: Free decay test with locked TMD: Displacement at

Typical results of the experiments are presented and briefly

commented in the following sections.

midspan.
Evaluation:
b()eg(;:a;g’::;nnif Damping ratio
i\?e?rigg;amplitude: ~30mm| °° ém% = 0.081 Gy = (%fl = 1.29%
i\?grlggezamplitude: ~14mm| ®~ %mlg% =009 | Gy = (% 1.43%
i\?grlgge?’amplitude: ~6mm | °° %m% = 0.092 S = (% 1.46%
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Fourier-spectrum of the displacement at midspan
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Figure 14.4: Free decay test with locked TMD: Fourier-spectrum of the
displacement at midspan.

The measured natural frequency of the footbridge with locked
TMD is equal to:

f = 1.89Hz (14.1)

This value is less than the value given in Section 14.2.1. This
can be explained with the large amplitude of vibration at the start
of the test, which causing the opening of cracks in the web of the
beam, hence reducing its stiffness.

The second peak in the spectrum corresponds to f = 1.98Hz,
wich is in good agreement with Section 14.2.1.
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14.5 Sandbag test

The sandbag test consists in hanging a 20 kg sandbag 1 meter
above the footbridge, letting it fall down and measuring the re-
sponse of the system.

In order to excite the different modes of vibration of the foot-
bridge, the test is repeated several times changing the position
of the impact of the sandbag on the bridge. The considered lo-
cations are:

- at midspan (Section 14.5.1)
- at quarter-point of the span (Section 14.5.2).

These tests are carried out with locked TMD. In order to investi-
gate the effect of the TMD on the vibrations of the system, the
test of Section 14.5.1 is repeated with free TMD (see Section
14.5.3).

Remark

* The results presented in Section 14.5.1 and those presented
in Section 14.5.2 and 14.5.3 belongs to two different series of
tests carried out at different point in time. Between these test
series the test setup was completely disassembled and reas-
sembled. Slight differences in the assemblage of the test setup
(support!) may have led to slightly different natural frequencies
of the system.
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14.5.1 Locked TMD, Excitation at midspan
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Figure 14.5: Sandbag test with locked TMD: Acceleration at midspan.
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Figure 14.6: Sandbag test with locked TMD: Fourier-spectrum of the
acceleration at midspan.
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Figure 14.7: Sandbag test with locked TMD: Acceleration at quarter-
point of the span.
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Figure 14.8: Sandbag test with locked TMD: Fourier-spectrum of the
acceleration at quarter-point of the span.
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Remarks

» With the sandbag test in principle all frequencies can be excit-
ed. Figures 14.5 and 14.7 show a high-frequency vibration,
which is superimposed on a fundamental vibration;

» The Fourier amplitude spectrum shows prominent peaks at the
first and third natural frequencies of the system (Footbridge
with locked TMD);

* The second mode of vibration of the system is not excited, be-
cause the sandbag lands in a node of the second eigenvector.

» At midspan, the amplitude of the vibration due to the first mode
of vibration is greater than at quarter-point. The amplitude of
the vibration due to the third mode of vibration, however, is
about the same in both places. This is to be expected, if the
shape of the first and third eigenvectors is considered.

* The vibration amplitude is relatively small, therefore, the meas-
ured first natural frequency f; = 2.0Hz in good agreement with

the computation provided in Section 14.2.1.
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14.5.2 Locked TMD, Excitation at quarter-point of the span
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Figure 14.9: Sandbag test with locked TMD: Acceleration at midspan.

0040 T T T T T T T
5
5 00307 ¢ oomz ]
IS
(0]
8 0.020f 1
©
g
& 00101 £=18.31Hz ]
0.000 P —rA
0 5 10 15 20

Frequency [HZz]

Figure 14.10: Sandbag test with locked TMD: Fourier-spectrum of the
acceleration at midspan.
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Figure 14.11: Sandbag test with locked TMD: Acceleration at quarter-
point of the span.
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Figure 14.12: Sandbag test with locked TMD: Fourier-spectrum of the
acceleration at quarter-point of the span.
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Remarks

 When the sandbag lands at quarter-point of the bridge, the
second mode of vibration of the system is strongly excited. Its
contribution to the overall vibration at quarter-point of the foot-
bridge is clearly shown in Figures 14.11 and 14.12.

» The acceleration sensor located at midspan of the footbridge
lays in a node of the second mode of vibration, and as expect-
ed in figures 14.9 and 14.10 the contribution of the second
mode is vanishingly small.
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14.5.3 Free TMD: Excitation at midspan
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Figure 14.13: Sandbag test with free TMD: Acceleration at midspan.
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Figure 14.14: Sandbag test with free TMD: Fourier-spectrum of the
acceleration at midspan.
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Remarks

» With active (free) TMD the “first” and the “third “natural fre-
quencies of the bridge are excited. As expected, these fre-
quencies are slightly larger than the natural frequencies of the
system (bridge with locked TMD), which are given in Figure
14.6. This is because the mass of the TMD is no longer locked
and can vibrate freely.

* The effect of the TMD is clearly shown in Figure 14.14. The
amplitude of the peak in the “first natural frequency” is much
smaller than in Figure 14.6. The amplitude of the peak at the
“third natural frequency” is practically the same. The “third
mode of vibration” is only marginally damped by the TMD.

* In the two comments above, the natural frequencies are men-
tioned in quotes, because by releasing the TMD number and
properties of the natural vibrations of the system change. A di-
rect comparison with the natural vibrations of system with
locked TMD is only qualitatively possible.
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14.6 One person walking with 3 Hz

One 65 kg-heavy person (G = 0.64 kN) crosses the footbridge.
He walks with a frequency of about 3 Hz, which is significantly
larger than the first natural frequency of the bridge.

Remarks

* The static deflection of the bridge when the person stands at
midspan is:

 The maximum measured displacement at midspan of the
bridge is about 2 mm (see Figure 14.15), which corresponds to

about 2.5 times d . As expected, the impact of dynamic effects
is rather small.

* In the Fourier spectrum of the acceleration at midspan of the
bridge (see Figure 14.17), the frequencies that are represent-
ed the most correspond to the first, the second and the third
harmonics of the excitation. However, frequencies correspond-
ing to the natural modes of vibrations of the system are also
visible.
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Test results
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Figure 14.15: One person walking with 3 Hz: Displacement at midspan
with locked TMD.

-
o

Acceleration at midspan [m/s?]

A0

P TR
0 5 10 15 20 25 30 35 40
Time [s]

Figure 14.16: One person walking with 3 Hz: Acceleration at midspan
with locked TMD.
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Figure 14.17: One person walking with 3 Hz: Fourier-Spectrum of the

acceleration at midspan with locked TMD.
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14.7 One person walking with 2 Hz

One 95 kg-heavy person (G = 0.93 kN) crosses the footbridge. He
walks with a frequency of 1.95 Hz, which is approximately equal to the
first natural frequency of the bridge. The length of the step is 0.70 m.

Sought is the response of the bridge under this excitation. A
similar problem was solved theoretically in Section 13.3.3.

14.7.1 Locked TMD (Measured)

First the maximum amplitudes are calculated by hand:

Static displacement: d, = — = == = 0.00108m = 1.08mm

(Measured: d, = 1.22mm)

Walking velocity: v=S-f,=107-195 = 1365m/s
Crossing time: At = L/v = 17.40/1.365 = 12.74s
Number of cycles: N = At-f, = 12.74-1.95 = 25

Amplification factor: @ = 22 (From page 13-20 with ¢, = 1.6% )

47 1.957-0.00108 - 0.4 - 22
1.43m/s?
(Measured: a,,, = 1.63m/s?)

Max. acceleration: a

max

Max. dyn. displ.: diynmax = 1.08-0.4:22 = 9.50mm

Max. displacement: dpax = 9.50+1.08 = 10.58mm
(Measured: d_,, = 12.04mm)

14 Pedestrian Footbridge with TMD Page 14-20



Course “Fundamentals of Structural Dynamics” An-Najah 2013

Test results
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Figure 14.18: One person walking with 2 Hz: Displacement at midspan
with locked TMD.
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Figure 14.19: One person walking with 2 Hz: Acceleration at midspan
with locked TMD.
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14.7.2 Locked TMD (ABAQUS-Simulation)
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Figure 14.20: One person walking with 2 Hz: Displacement at midspan
with locked TMD. (ABAQUS-Simulation).
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Figure 14.21: One person walking with 2 Hz: Acceleration at midspan
with locked TMD. (ABAQUS-Simulation).
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The curves in Figures 14.20 and 14.21 were computed using the
FE program ABAQUS. A similar calculation is described in detail
in Section 13.3.3. The input data used in that section were only
slightly adjusted here in order to better describe the properties of
the test.

Maximum vibration amplitude

Static displacement: d, = 1.08mm
(Measured: d, = 1.22mm)

Maximum displacement:  d_, = 11.30mm
(Measured: d_,, = 12.04mm)

e o d
Amplification factor: v = cmax _ 113064
d, 108
Maximum acceleration: a,, = 1.68m/s?

(Measured: a,,, = 1.63m/s?)

The maximum amplitudes of the numerical simulation and of the
experiment agree quite well and also the time-histories shown in
Figures 14.18 and 14.21 look quite similar.

Please note that during the first 2 seconds of the experiment,
displacements and accelerations are zero, because the person
started to walk with a slight delay.
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14.7.3 Free TMD
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Figure 14.22: One person walking with 2 Hz: Displacement at midspan
with free TMD.
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Figure 14.23: One person walking with 2 Hz: Acceleration at midspan
with free TMD.
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Estimate of the maximum vibration amplitude

Amplification factor: about 5.5 (from page 13-41)

Maximum dyn. displ.: = 1.08-0.4-55 = 2.38mm

ddyn,max

Maximum displacement: d .. = 2.38+1.08 = 3.46mm

(Measured: d .. = 3.27mm)

4m* - 1.95%-0.00108 - 0.4 - 5.5
0.36m/s2

(Measured: a_, = 0.34m/s?)

Maximum acceleration.: a

max

14.7.4 Remarks about “One person walking with 2 Hz”

* The effect of the TMD can be easily seen in Figures 14.22 and
14.23. The maximum acceleration at midspan reduces from

1.63m/s? to 0.34m/s?, which corresponds to a permissible
value.
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14.8 Group walking with 2 Hz

All student participating to the test (24 people) cross the foot-
bridge in a continuous flow. A metronome is turned on to ensure
that all students walk in the same step and with a frequency of
about 2 Hz.

The test is carried out both with locked (Section 14.8.1) and free
(Section 14.8.2) TMD.

In Figures 14.24 to 14.27 the first 40 seconds of the response of
the bridge are shown.

Remarks

The results of the experiments with several people walking on
the bridge are commented by using the results of tests with one
person walking (see Section 14.7) as comparison. For this rea-
son the maximum vibration amplitudes shown in Figures 14.18,
14.19, 14.22, 14.23 and 14.24 to 14.27 are summarised in Ta-
bles 14.1 and 14.2.

Case Group |1 person ratio
Maximum acceleration at 2 2
midspan. Locked TMD 2.05 m/s“|1.63 m/s 1.26
Maximum acceleration at 2 2
midspan. Free TMD 0.96 m/s“|0.34 m/s 2.82
Ratio 2.14 4.79

Table 14.1: Comparison of the accelerations at midspan.
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Case Group | 1 person ratio

Maximum displacement at

midspan. Locked TMD 20.52 mm|12.04 mm 1.70

Maximum displacement at
midspan. Free TMD

Ratio 1.67 3.68

12.28 mm| 3.27 mm 3.76

Table 14.2: Comparison of the displacements at midspan.

It is further assumed that only about 16 of the 24 persons are on
the footbridge at the same time.

The following remarks can thereby be made:

* The maximum acceleration measured at midspan of the bridge
with locked TMD is only about 1.26-times greater than the ac-
celeration which has been generated by the single person. Ac-
cording to section 13.3.3 we could have expected a larger

acceleration from the group (/16 = 4). One reason why the
maximum acceleration is still relatively small, is the difficulty to
walk in the step when the “ground is unsteady.” With a little
more practice, the group could probably have achieved much
larger accelerations. It is further to note that the person who
walked of the bridge for the test presented in Section 14.7 was
with his 95 kg probably much heavier than the average of the

group.
* The maximum displacement measured at midspan of the

bridge with locked TMD is 1.70 times larger than the displace-
ment generated by the single person. The amplification factor
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of the displacement is larger that the amplification factor of the
accelerations, because the static deflection caused by the
group is significantly larger than that caused by the single per-
son.

* The activation of the TMD results in a reduction of the maxi-
mum acceleration caused by the single person by a factor of
4.79. In the case of the group the reduction factor is only 2.14.
It should be noted here that when the TMD is active (free), the
vibrations are significantly smaller, and therefore it is much
easier for the group to walk in step. It is therefore to be as-
sumed that in the case of the free TMD, the action was strong-
er than in the case of the locked TMD. This could explain the
seemingly minor effectiveness of the TMD in the case of the

group.
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14.8.1 Locked TMD
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Figure 14.24: Group walking with 2 Hz: Displacement at midspan with
locked TMD.
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Figure 14.25: Group walking with 2 Hz: Acceleration at midspan with
locked TMD.
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14.8.2 Free TMD
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Figure 14.26: Group walking with 2 Hz: Displacement at midspan with
free TMD.
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Figure 14.27: Group walking with 2 Hz: Acceleration at midspan with
free TMD.
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14.9 One person jumping with 2 Hz

One 72 kg-heavy person (G = 0.71 kN) keeps jumping at mid-
span of the footbridge. He is jumping with a frequency of
1.95 Hz, which is approximately equal to the first natural fre-
quency of the bridge.

Sought is the response of the bridge under this excitation. A
similar problem was solved theoretically in Section 6.1.3.

14.9.1 Locked TMD

First the maximum amplitudes are calculated by hand:

Static displacement:

e 1 1
Amplification f r: === ——=3]2
plification facto \Y 3~ 370016) 31.25
Maximum acceleration: ~ a_ = 4x”-1.95-0.0008 - 1.8 - 31.25
= 6.92m/s?

(Measured: a_,, = 7.18m/s?)

Max. dyn. displacement: = 0.82-1.8-31.25 = 46.13mm

ddyn,max

Maximum displacement: d ., = 46.13+0.82 = 46.95mm

m

(Measured: d_,, = 51.08mm)
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Test results
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Figure 14.28: One person jumping with 2 Hz: Displacement at midspan
with locked TMD.
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Figure 14.29: One person jumping with 2 Hz: Acceleration at midspan
with locked TMD.
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14.9.2 Free TMD
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Figure 14.30: One person jumping with 2 Hz: Displacement at midspan
with free TMD.
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Figure 14.31: One person jumping with 2 Hz: Acceleration at midspan
with free TMD.
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Estimate of the maximum vibration amplitude
Amplification factor: about 5.5 (from page 13-41)

Maximum dyn. displ.: = 0.82-1.8-55 = 8.12mm

ddyn;nax

Maximum displacement:  d,,. = 8.12+0.82 = 8.94mm

m

(Measured: d,, = 8.12mm)

n°-1.95%.0.0008-1.8-5.5
1.22m/s?
(Measured: a,,, = 1.04m/s?)

Maximum acceleration:

o
Il

max

14.9.3 Remarks about “One person jumping with 2 Hz”

* When jumping, the footbridge can be much strongly excited
than when walking.

* The achieved acceleration a ., = 7.18m/s? = 73% g is very
large and two jumping people could easily produce the lift-off
of the footbridge.

* The effect of the TMD can be easily seen in Figures 14.30 and
14.31. The maximum acceleration at midspan reduces from

7.18m/s2 to 1.04m/s?, what, however, is still perceived as un-
pleasant.
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