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= Seismograms as signals
s Signal transformations: background mathematics

s Signal transformations

= 2D array transformations
s Forward and inverse modeling

= Two selected algorithms: Occam & neighborhood algorithms
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Seismic recordings h

Seismogram: A recording of particle displacement/velocity/acceleration or pressure with time
In surface wave methods, the most common seismograms are velocity-meters.

36340 36350 36360 36370
Time (msec)

Other distinctive features:
Frequency range characteristics (frequency bandwidth, cut-off frequencies)
Particle motion range characteristics (strong, intermediate, weak motion)
Permanent vs. temporary deployment
1-component vs. 3-component
Surface (1D - 2D) vs. downhole
Single station vs. multi-station
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Complex numbers (background) 2 e

[ / i (rectangular coordinates)
I Euler’'s formula:
Z = [COS jrsin(é@)z | (polar coordinates) [ cos(y) sin( )
r
Polar vs. rectangular coordinates: The complex plane:
r = 71 cos(f) r cosQ 7=x +j_}’
y = PHilll:ﬁ":l. ¥ fl._‘
I :
) ) i,,"* r sin 9
-Magnitude:  » = /22 5 Lo . g
-Angle: f = tan '(y.,z). £ 7 *} f
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Sign ansformations '
ackground Mathematics
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Fourier Transforms
Sampling: Continuous vs. Discrete
Duration: Infinite vs. Finite
Hence, four different definitions for the Fourier Transform:
Time Duration
Finite [nfinite
Discrete FT (DEFT) Discrete Time FT (DTEFT) | discr.
N—1 —+ o
X(k)= Z rinje ' Xlw)= Z rinje time
rn=>(} n—=——oo
E=0,1,....N —1 w € [—m, +m) n
Fourier Series (F'S) Fourier Transform (FT) comnt.
P + oo
X(k)= %[ r(t)e et dt | X(w) :[ r(t)e dt | time
0 -
k=—00,...,+00 W € (—oo, +0a) t
discrete freq. k continuous freq. w

Source: https://ccrma.stanford.edu/~jos/st/Fourier_Transforms_Continuous_Discrete_Time_Frequency.html
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Fourier Transforms

Everything we do

Type of Transform

IUSS

Example Signal
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Fourier Transform
signals that are continious and aperiodic

Fourier Series
signals that are continious and periodic

Discrete Time Fourter Transform
signals that are discrete and aperiodic

Discrete Founer Transform

In a computer
is DFT!!
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signals that are discrete and periodic

[ —— o -"'-.-..-___-
ns

[ [} - .l-'l“-. - -I.-'.-—. - .l—'l

g " =

Ilustration of the four Fourier transforms. A signal may be continuous or discrete, and it may be
periodic or aperiodic. Together these define four possible combinations, each having its own version
of the Fourier transform. The names are not well organized; simply memorize them.

Source: http://www.dspguide.com/ch8/1.htm
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Notation for FT: g(t) 2 G(f)

Fourier Transforms

t ] G( f) = Re{G}+ |m{G}: Mag{G}eiPhase{G}

Mag Re{G} = Mag{G}cos(Phase{G})

IM{G} = Mag{G}sin(Phase{G})

hase(G Mag{G} = \/RG{G}Z +Im{G¥

Phase{G} = arctan ( Im{G}]

Re{G}
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Discrete Fourier Transform (DFT)

N-1
B _iot. n=012..N-1
X(a)k)—Zx(tn)e <E=0,1,2,...,N—1

St et

n=0

[t,.t,t,...t ]

[X(t ), X(t ), X (), o X(ty o )]

[y, fir v ]

[X(f,), X (1), X(1,), X (T )]
Sampling time interval: dt 1
Sampling frequency interval: f, Tt

Inverse Discrete Fourier Transform (IDFT)
1S ot [n=012,..,N-1
X(t”)_ﬁgx(wk)e <E=0,1,2,...,N—1
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N = R
Discrete Fourier Transform (DFT)

Time Domain Frequency Domain

x[ ] Forward DFT Re X[ ] Im X[ ]
NN EEEEEEEEEn Lrrrrrrrry LIl TTTTT]
1] _ N-1 1] N2 0 N/2
N samples N/2+1 samples N/2+1 samples
Inverse DFT jcosine wave amplitudes)  (sine wave amplitudes)
N\ /

S
collectively referred to as X[ ]

DFT terminology. In the time domain, x[ ] consists of N points running from 0 to ¥-1. In the frequency domain,
the DFT produces two signals, the real part, written: REe AT ], and the imaginary part, written: Jm X ]. Each of
these frequency domain signals are N2 + 1 points long, and mun from 0 to N2 . The Forward DFT transforms from
the time domain to the frequency domain, while the Inverse DFT transforms from the frequency domain to the
time domain. (Take note: this figure describes the real DET. The complex DFT, discussed in Chapter 31,
changes N complex points into another set of NV complex points).

Source: http://www.dspguide.com/ch8/1.htm
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DFT example

Time Domain
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2 ]
a x| ] l b. Re X[ ]
1 4
a o ﬁ l-.
2 j Ik._ Z mw®m . " l'! - ey
i a | 'T___ﬂ__-,.____._ __I___.!_
= T E +_ |
L, b LI [ ¥
| |
[
-1 { -4
4
=] -8
0 32 48 64 BD ®§ 112 127 ] 16 a1 48 4
Samyple oumbes Frequency (sample namber)
]
Example of the DFT. The DFT converts the c. ImX[ ]
time domain signal, x[ ]. into the frequency
domain signals, ReX[ ] and X[ ]. The 4

horizontal axis of the frequency domain can be ) L
labeled in one of three ways: (1) as an array =
index that runs between 0 and N2, (2) as a
fraction of the sampling frequency. running

1
ok
|
.L:J..
§I‘

between 0 and 0.5, (3) as a natural frequency, S mm n
running between 0 and = In the example 4 ' o
shown here, (&) uses the first method, while {c)
use the second method.
£
0 0.1 0.2 0.3 0.4 0.5

Frequency (fraction of sampling rate)

Source: http://www.dspguide.com/ch8/1.htm
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DFT basis functions

1] (27
S [1]=sI
=

ck and sk contain N points: i=0,...,N-1
k determines the frequency of the basis function, which can range from 0 to N/2

C - (f) [ (N [lel2Y
I\ } L2\ 12\
) )
g ( \ ( |
T N/2 numbers N/2 numbers
| representing representing
«——» Npoints amplitude of cx amplitude of sk
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DFT basis functions Y A N e N

Amplitude
L=]
Amplitude
L=}

B o 8 16 -+ iz 1] ] 1§ 4+ iz
Sample oumber Sample oumber

Example:

32 point DFT contains

17 discrete cosine waves (real part)
and 17 discrete sine waves (imaginary

. Amplitude

part) o H samw::nmbﬂ 24 2 T 8 mp;:nmw 4 5
TR RIE T TR ST ]
s AAMRTANART 3 TINARTNAR
B Frrr,.r‘lrrli:;,u**;rfﬂﬁ*' z»“"rﬂ*l'ﬁﬁ-ﬁ IHIRTATAN
UYLV U VY RN YUY
| |
co means 0 cycles in N points T s T T s
C: means one cycle in N points ’ ’
' ' arsttidasettniang 1 T T
2 means two cycles in N points j‘ﬁ il ﬁml”l i ﬂﬂlh’l I T
* JOUUUNVURUUTURTYY = [V vqvy
Source: http://www.dspguide.com/ch8/1.htm 7 i
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DFT basis functions

[ N : ki Y Im Sj ki | ‘ Synthesis Equation
— - Re{X[K]}
Re{X[k]}= - -
XLkl N /2
— Im{ X[k
ImEX KT =~ A

Re{X[0]} = Re{ﬁ[k]}

Re{X[N /2]}:Re{x[|\|l|/2]}
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DFT vs. DTFT

Discrete Time Founer Transform
signals that are discrete and aperiodic

Discrete Founier Transform
signals that are discrete and periodic
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Discrete FT (DFT)

N-1
X (k)= ) z(n)e 7"
rn=I()

Discrete Time FT (DTFT)
00

2

n=—0oc

w € [-m,+7)

— jwn

X(w)= x(n)e
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DFT vs. DTFT

The DFT is the transform of a limited number of samples of a periodic signal (whether or
not the actual signal is in fact periodic).

The DTFT is a transform of the ENTIRE sampled signal from -oo to + oo, and the input
Isn't necessarily periodic.

One is mathematical and precise (DTFT), the other is physically realizable (DFT).

DFT: time domain is discrete and periodic with period T.
frequency domain is discrete and periodic.

DTFT: time domain is discrete and not necessarily periodic.
frequency domain is continuous and periodic.

Discrete FT (DFT) Discrete Time F'T (DTFT)

N-1 fox
A (k)= Z r(n)e 7" X(w)= Z z(n)e "
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DFT in time domain G EUCENTRE e )!g§§,
.::.:(R

Amplitede

The time domam
viewad as N pomts ::}

The time domain
viewad as periodic

ka

—
1

Amplitude
[=]

o
1
|

[

-384 -158 -12% Q 128 256 1E4
Sampla momber

FIGURE 10-8
Periodicity of the DFT's time domain signal  The time domain can be viewed as N samples in length, shown
in the upper figure, or a5 an infinitely long periodic signal, shown in the lower figure.

Source: http://www.dspguide.com/ch10/3.htm
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DFT in frequency domain

Source: http://www.dspguide.com/ch10/3.htm
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NMagzmitude

The fraquency domain
viewed as 0 to 0.5 of

viawed as periodie

A
N

the sampling rate a
54 [Phase] &
by
2
I R"'!..
Zoy [N
BN
NN
B
4.
The frequency domain 0 0.1 0.2 03 S 05

Frequency

L L]

Amplitude
[ =13

-15 -1 A5 o 5 1 15
Frequency
3 A ]
27 \\Jh\rh . NN NN
EIN TN . W '!*:kaa&i ':::‘ﬁq"—‘— NI
i Y _\f'ﬂ — \ L " Vi
SN TN L 1 bl
-15 -1 0.5 o 05 i 15
Frequancy
FIGURE 10-9

Peniodicity of the DFT's frequency domain. The frequency domain can be viewed as nmuning from 0 to 0.5 of
the sam m% rate (upper two figures), or an infinity long periodic signal with every other 0 to 0.3 segment
flipped lefi-for-right Sow&rtwo figures). 19



DFT secenre (%) Jue T
Problem: match points with cosines, of different frequency and phase? — == T

Answer: family of solutions....

1 2 T
a. Samples b. Solution 1
f=3, 8=-n/d
1—-.. o1 1
[ ] }- n
"lj’ | = = | F/
- L |
=0 - =
E n n " =
& [ [
| | | | =
1 An o — -
] -
0 2 14 M 31 1] 8 14 M 32
Sample numbar Sample numbar
] I 2 T
¢ Solution #2 d. Solution #3
f=-3,8=n/4 f=358=-r/4
14 1
a I
i |
=0
B
=

Ul

a 3 18 24 32
Sample number

Amplitude
=
ol
|

e

0 k3 16 M4 31
Sample number

FIGUEE 10-11

The meaning of negative frequencies. The problem is to find the frequency spectrum of the discrete signal shown
in (a). That is, we want to find the frequency and phase of the sinusocid that passed through all of the samples.
Figure (b) iz a solution using a posifive frEti[uenr,jr, while (c} is a selution vsing a negafive frequency. Figure (d)
represents a family of solntions to the problem.

Why ‘bOther, Wlth negative frequenCieS? Source: http://www.dspguide.com/ch10/3.htm
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Why ‘bother’ with negative frequencies
(and “negative” time)?

Some DSP operations don't require knowledge of negative frequencies.
Example in spectral analysis sufficient to see frequency domain from 0 to % fs.

However, many DSP operations require knowledge of negative frequencies, as
signals may overflow between periods causing time and frequency domain aliasing.
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Periodicity in time domain + processing

time domain aliasing

Periodicity in frequency domain + processing

frequency domain aliasing
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a. Time domain aliasing b. Frequency domain aliasing

Frequency

FIGUEE 10-10

Examples of aliasing in the time and frequency domains, when only a single peniod 15 considered. In the time
domain, shown in (a), gﬂfﬂﬂﬂﬂ of the signal that exits to the nght, reappear on the lefi. In the frecglnen
domain, (b}, portions of the signal that ext to the nght, reappear on the right as if they had been folde

Source: http://www.dspguide.com/ch10/3.htm
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How can we calculate the DFT?

-solve simultaneous linear equations
-correlation method
-Fast Fourier Transform

Why FFT? IT IS FAST!!! From walking... to a jet aircraft!!!
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FFT for signal processing engineers

Time Domain Data

FIGURE 12-7
Flow diagram of the FFT. This is based
on three steps: (1) decompose an N point

fime domain signal mnto N signals each 3 e Time
containing a single point, (2) find the %&ﬁﬁfﬁ{s Domain
spectrum of each of the N pomt signals - Decomposition
(nothing required), and (3) synthesize the
N frequency spectra into a single
frequency spectrum.
Y
Overhead
i
g %‘ Overhead Fr&qumf}"
w| 2 E > Domain
% Bl = - Synthesis
E E 5 Y
g E = Bufterfly
= =| E Calculation
% g
Y

Frequency Domain Data

Source: http://www.dspguide.com/ch10/3.htm
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FFT for signal processing engineers

e
Sample numbers Sample numbers 55 e ||
1n normal order after bit reversal SEUE;;‘JSGFR mﬁ?om
iglgﬂ?'lt‘,’f (@14 sa7 g Wil Db | Decimal Binary Decimal Binary
[ois ; o 0000 0 0000
f i 1 0001 8 1000
2 signals of 2 0010 4 0100
e [0 i simD][11: 18 11315) : s .
J‘ 4 i\ 4 Q100 2 Qo010
. . A ¥ oy 5 0101 10 1010
4 signals of
4 5 < : P s ] 0110 [ 6 0100
Hmer [l2 61011500337 1135] ? = e .
/ '\ y
‘ . . 2 8 1000 1 0001
§ signals of - — - 9 1001 0 1001
e of [6 14 [1 o] [513][3 nuf[715] o 1010 .
\ / : [ A [ : o
i . L . i 3 0011
signals o . all= 13 1101 11 1011
| = [ [s) ] ] ]G] YRt P o
15 1111 15 1111
FIGURE 12-2 HAiRE 15 5
< L : L . . . : 2.3
%hEhFFtT d:Lmnpﬂ,\,l_Imn.l A!il JI: ot blg.?,al L dﬁmlm:ig 1_11[[‘1 o E“lg:; als;aCh ngw.;u._mg d ;’ ingle point The FFT bat reversal sorting. The FFT time domain decomposition can be implemented by
ach stage uses an interlace decomposition. separating the even and odd numbered samples. SOty - Sanonles decaiding o it ievened e
N : LLLI
A ex-operationsHH
Time Domain Frequency Domain
Odd- Four Point Even- Four Poimt
[a]blcld] Pees ABICD] Frequency Spectrum Frequency Spectram
FFT synthesis flow diagram. This shows o e ‘x}/
[alofb]ole]old o] R nd ARcDlAlB[C D] the method of combining two 4 point S TS e e
frequency spectra info a single & point . e b
frequency spectrum. The 5 operation e N
means that the signal iz multiplied by a e
FEERE sinusoid with an approprniately selected - gl N
= frequency. e F e ‘q E
- (+) (F) LE) () (4]
Eight Point Frequency Spectrum
[0]eole]o]elaln] o ElrfclulElr]cf]
FIGURE 12-4
The FFT synthesis. When a time domain signal is diluted with zeros, the frequency domain is
duplicated. If the time domain signal 15 also shifted by one sample during the dilution. the spectrum
will addinonally be multiplied by 2 sinusoid.
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Useful operations: gecenre (@) s

Convolution =
y=[11110,0,0,0]

N1 h=[1,0,0,0,0,1,1,1]
(x*y), =D x(m)y(n—m) (y#h)(n)=[4.3,2,1,0,1,2,3
— : TR
_}(IH) II ooco | E_x'f:ra}hfn—m}g
Convolution is cumulative: ho-my 11T 4
h(1-m) _GI im |

* - * .
X7Yy=y"X hz-m) _. I, .
Convolution is associative: hGm) o111,

3
2
1
ham) 1L 0
X*(y*2) = (y*X)*2 o

' | 2

3

ne-my 11 11

Convolution Theorem no-my ML L 3
(multiplication in one domain is convolution in the other domain):
=\ J

Source: https://ccrma.stanford.edu/~jos/mdft/Convolution_Example_3_Matched.html
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Convolution as Impulse Response

Delta Impulse

Function Response

E I i 1 T T T T T

i i I-I NN
P o R R
opniesenny oAl k4

11 : 1A
2-10123456 -2-1012345%5

o] — > Sosom |— hial

Defimition of delfa furction and impulse response. The delta fiuinction 13 a normalized impulse. All of
its samples have a value of zero, except for sample number zero, which has a value of one. The Gresk
letter delta, &[n], 15 nsed to 1dentify the delta function. The fmpulse response of a linear system, usnally
denoted by h[n], 13 the ontput of the system when the wput 1s a delta function.

5(t) *h(t) = h(t) * 5(t) = h(t)

Source: http://www.dspguide.com/ch6/2.htm
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Useful operations: geoenre () )

Correlation =
N -1
(Xoy), = Z X(m)y(m—n)
m=0
Normalized correlation:; Special Case: autocorrelation
N N -1
X(m m-—n
mz=° myin o (X X), =Zx(m)x(m—n)

m=0

(Xoy)y=—= =
\/ D (x(m))*> " (y(m—n))?

m=0 m=0
Correlation is a statistical measure of how similar two waveforms are.

The DFT of the correlation is called cross-spectral density, or cross-spectrum:

(Xoy) O Xty
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Operation Time Function Fourier Transform
Linearity afl(t) S bfz(t) aFl(w) + ng((x))
Time shift f(t — 1) F(w)e/®h
Time scaling f(ar) . (=2

la| \a
Time transformation f(at — ty) ﬁ F (B)e‘j‘"‘ol -
a a
Duality F(1) 2rf(—~w)
Frequency shift f(t)el®o! F(w—wy)
Convolution f1®)*f2(t) Fi(w)Fy(w)
F1(DOf () S 1(@) Fay(w)
. - d"[f(1)] .
Differentiation a7 (jo)"F(w)
. d"[F(w)]
—it n t P A £
710 o
: 1
Integration f f(r)dr ]—F (w) + wF(0)8(w)
—00 w

Source: http://faculty.kfupm.edu.sa/EE/muqaibel/Courses/EE207%20Signals%20and%20Systems/EE207%20SignalsAndSystems3.htm
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Common Fourier Transforms T

"time" domain frequency domain

\ 4

Impulse, or "delta" function
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Sampling in the time domain - Spectral Leak;ge

Sampling in the time domain (multiplication by shah), implies
convolution in the frequency domain by shah. The convolution
causes periodic repetition of the spectrum. If sampling in time
domain is coarse, then repeated spectra are close to each other,
causing spectral leakage.
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Nyquist-Shannon sampling theorem =

If a function x(t) contains no frequencies higher than B Hz, it is completely determined by
giving its ordinates at a series of points spaced 1/(2B) seconds apart.

In other words, the sampling rate must be twice the highest frequency (fwqus) In order to be

able to reconstruct the signal. e 1 1

Nyquist 2 sampling — 2dt

Signal frequencies higher than the Nyquist frequency will encounter a "folding" about the
Nyquist frequency, back into lower frequencies. Ex. Sample rate 20Hz, Nyquist is 10Hz, then
11Hz signal will fold to 9Hz, similarly, a 9Hz can fold to 11 Hz.

1:Ny uist
\ X ( f)

A

Aliases

A
I\

Sinusoid at \

/ ! frequency 0.6 f ﬂ \
’ i / \
’ ! ’ N
- - - - > -
-B B I 0.5 f, f, 1.5 f,
o /
Y
Folding

Source: http://en.wikipedia.org/wiki/Nyquist_frequency
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sampling in the time domain - Spectral Leakage

TIME DOMAIN FREQUENCY DOMAIN

T T m = T T T T
CONTINUQUS SIGNAL n ‘ [\ I | SPECTRUM OF CONTINUOUS SIGNAL
GO0 - — I#l § 1 } A7 F—t - B I ! ] 1 | | | i
/p\, J.f\-.\ f.r \_“ ,f: \.\ f |II |‘ ‘Il .'I "'\ .-"I .\ .*' ".‘ fr \
L I { T i o S 4 f i
500 ! LSS |/ Y N Y T SN SN VA V' al | | |
Y \ \/
|/ u
-~ ! | I I 1 I L L L 1 I L L
0 o1 o2 03 04 08 0a -0 — D 300 200 104 0 w0 200 300 400 — 40
. At fs=1/At uti
multiplication . —— — * convolution
SPECTRUM OF COMB
COMB
1 JrevE. . s . " Shasgs 1t : : .
1 i
0a A L L | | L cal | | | | |
06 HHAHH! H-H HHHH ] HHHH 05 ! {
04 . ‘ H Hu } : HH F 6.4- ! 11
02 AT i HiH 1 i 0z |
U ‘ 1 | | i 1 1 1 1 1 L 1 1 L | 1 1 .
0 ol 02 03 04 05 06 o0 0D -EDD 200 100 0 w0 200 30 400 — e
. . \—/ SPECTRUM OF SAMPLED SIGNAL
SAMPLED SIGNAL | T ' ' ] ' ‘ ‘ | ] [ ' ]
500 . { . . 1 - . . p 1 -‘ - . 1 . ﬁ H 1 1 4 1 4
Glege™ s o ! f I ! .. b * ! A Y I /4 e 'n'u.. 4o ! ! |
500 . i » . 2-
BT ) ! | . | 1
0 ol 02 03 04 95 06 - —

400 00 200 <100 0

107 200 300 qon — Fee

Source: Foti et al., 2013
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Nyquist frequency:
adequate/inadequate sampling
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Nyquist frequency:
adequate/inadequate sampling
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Anti-alias filtering 2

An anti-aliasing filter is a filter used before a signal sampler, to restrict the
bandwidth of a signal to approximately satisfy the sampling theorem.
Often, an anti-aliasing filter is a low-pass filter.

~— INFINITE TRANSITION REGION

0dB 0dB
_-_.\QE

(V] (V]

S M——— PASSBAND ——M—————— STOPBAND ———» -] — TH@;‘SL‘?N —

= =

3 3

g & [—— PASSBAND —W 4+—— STOPBEND ——»
L L

T ———
FREQUENCY
FREQUENCY

Brick-wall filter is unstable, N
Instead choose filter with transition region: '

BESSEL
BUTTERWORTH

: CHEBYSHEW
ELIIJr'TIC “ \
http://www.maximintegrated.com/app-notes/index.mvp/id/928
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Effect of windowing
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All signals which are finite in the time domain, imply multiplication by a boxcar in the time
domain, which corresponds to convolution by sync in the frequency domain.

r ] \

d »
Boxcar Sync Function
Convolution by sync causes ‘smearing’, which is a relatively localized spreading of frequency
components. The shorter the boxcar, the longer the sync function, and the worse is the

smearing effect.

To reduce leakage, it is advised to have longer recordings in time, and/or to use tapering
windows in the time domain, which behave better in the frequency domain. Examples of taper
window could be Hamming, Hann, Blackman, Gaussian, Tukey, Kaiser window, etc.

Source: http://brokensymmetry.typepad.com/photos/uncategorized/2008/06/19/transform_pairs_3.gif
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Tapering: Examples
Rectangular window Fourier transform Hamming window (2 = 0.53836) Fourier transform
0 T I i 1 0 1 T T 1
| , S10 | — 1 ]
-20
230 - ! A N
-40
o = =50
! L& -&0
g2 9 .70
3 - -80
-GQ0
-100
-110
130 136
samples bins samples hins
Elackman window Fourier transform Tukey window o = 0.5) Fourier transform
1F 1 T - o] | 0 I T 1
-10 -10 L . | —
-20 =20
-30 -20
-40 -40
o 50 4 -50
2 -?g 2 -560
- w70
o -80 & -80
-80 -G
-100 -
196 110
-120 -
156 156
-40-30-20-10 0 10 20 30 40 g N-1 -40-30-20-10 0 10 20 30 40
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Source: http://en.wikipedia.org/wiki/Window_function
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Dynamic Range

Dynamic range is the ratio between the largest and smallest possible values of the signal.
Usually measured as a base-10 (decibel, dB) or base-2 logarithmic (stops) value.

P
Lap = 10logy, (Fl)
0

Signal to Noise Ratio (S/N)

S/IN is a measure of the desired signal to the level of background noise.

2
S / N _ I:)signal _ ( Asignal j
Ahoise

noise

Alternatively, can define it based on ratio of mean to standard deviation of the signal:

S/N=£
(o)
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Depending on the application, a filter may be applied equivalently as multiplication in the

frequency domain, or a convolution in the time domain.

Common filters:
Low-pass (high-cut), high-pass (low-cut), bandpass filter

1.0
10

10— _
o = :
= I :
DJ_ = 3 dEB g-
5 % L f = Cuteff Frequency g s Pasdband
T z T —
O 0 =0.51— o e vr—
g | = | = I |
[ I = I g i |
s £ : | I
= 1 S | : I I
B f = Cutoff Frequency : | I I

| r n I ! ¥ D Frequen
Increasing Freguency f f Increasing Freguency f1 quEncy f2

e high-pass filter bandpass filter
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Source: http://syahit-at-utm.blogspot.gr/2012/11/30-0ct-2012.html#!/2012/11/30-0ct-2012.html
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Filtering

An acausal filter is a filter which does not change the phase of the signal, whereas a causal
filter may change the phase of the signal.

0 N Causal filter

i V‘—_
a8 =1k - - — : - original
2 =7 |—fitered |
E' L
] T— | e ACaUSal filter
- N N N .
3 2 -1 0 1 2 3 .
Time (s) Time (s)

Source: http://www.sciencedirect.com/science/article/pii/S0165027012002361
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Uncertainty Principle (Heisenberg-Gabor limi

(o s

A function cannot be band-limited both in time and frequency.

Stated alternatively, "one cannot simultaneously localize a signal (function) in both the time
domain (f) and frequency domain (Fourier transform)".

When applied to filters, the result is that one cannot achieve high temporal resolution and
frequency resolution at the same time; a concrete example are the resolution issues of the
short-time Fourier transform- if one uses a wide window, one achieves good frequency
resolution at the cost of temporal resolution, while a narrow window has the opposite trade-
off.

Let T be the duration of the signal, and B be its badwidth, then: TB>1
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Why should we transform from time and space to
frequency and wavenumber??

Wavefield transformations allow the separation and identification of different seismic events.

Common wavefield transformations, which involve Fourier transform: f-k, z-p, @-p

By means of wavefield transformations we can separate different types of waves (P- S- and
surface waves). Hence, f-k transformation is a powefull tool to isolate, and filter out unwanted
signals (noise).
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Wave Equation

A particularly useful class of solutions:

u(x,t) = Ae'“ = Alcos(wt + kx) +isin(wt + kx)]

Where k is defined as the wavenumber:  — %
v

In fact, k could be a vector in 3D.

This constitutes a function of both wavenumber and frequency. To analyze it we need
to introduce 2D Fourier transforms.
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Fourier Transform: 2D

Single component: ex. particle velocity as a function of time: V(t) from which we can, using
Fourier transform, obtain the magnitude and phase spectra.

Multi-component: Use 2D Fourier transform theory. From t-x to f-k domain.

1 N-AMma | 27,(%&%}

gixt) 2D Gk G[k, f]=mn§mzzog[m,n]e
1 N-AM i2 (m_k+ﬂJ
mnj=——— G[m,nle ™ "

g[ ] MN n=0 m=0 [ ]

Amplitude: |G(U,V) |= /G, (U,V)? +G; (U, V)?
| IR KX (R
Phase: #(u,v) =atan {—Gr (u,v)}
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Forward and Inverse 2D DFT

1 N-1M-1

DET Flk, 1] = T S 3 flm,n]e AR

n=0 m=0

N-1M-1 o “I
IDFT flm,n] = «/7 ; ;} N
D<mk<M-1, 0<n,l<N-1)
Flk, 1]
flm,n]

For 2D DFT, F and f are matrices of size M x N
(For 1D DFT we only had vectors!)
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Physical Meaning of 2D DFT

N-1M-1

Flk I = \./7 Z Z flm n]e—;-zﬁr[“‘k + %)

n=0 m=0
N—1M-1

Flk, |23 +%)
flm F > ).

=0 k=0

f(m,n) Is a linear combination of complex exponentials

{ —127zm—k -j2z I}
e M e N

with complex weights:
F(k,1)
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Physical Meaning of 2D DFT

Complex weights can be written in polar form as:

F(‘H.‘ "i:.l] — Ff(ﬂ.‘ "t.l] + jFi(u_‘w] — |F(H1 1..'] |EjﬂF{u,ﬂ}




Time (ms)

Frequency (Hz)
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Fourier Transform: 2D

Cc
Offset (m)

13 15 17 19 21 23

50 g
100 [ S P l g
L e Yl
150 i
200 J 10 20 30 40Freqi2nce 5_?2} 70 80 a0 100
| | { |
300 J. ] 1
o LI L
o e Benefits of 2D Fourier transform (examples):
Filtering: May separate several phases (i.e. ground roll, seismic
Interference) in the f-k which cannot be separated in the t-x doman.
Hence, the idea is to do a Fourier 2D transform, apply an f-k filter, and
apply an inverse Fourier 2D transform, thereby eliminating undesired
phases.
| Surface wave dispersion analysis: selecting the dispersion curve
v} used in shear-wave velocity inversion
Source: Song et al, 2009.
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Analogue:

Recording finite and discrete signal in time:

Recording finite and discrete signal in space:

Source: Geopsy H/V tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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Sampling — from continuous to discrete (aliasing theorem!!

Spatial sampling — from c
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Linear Array: finite and discrete L

Array measurements can be seen as a discrete spatial sampling (receiver locations)
of a continuous process (seismic wavefield)

For 1D linear arrays with equidistant spacing, the equivalence to time series sampling is
straightforward:

Time Domain Spatial Domain
AT < Tmin /2 AX < ﬂ“r’r:in /2 * apparent
Ao=271(N-DAT)| Ak =272 /(N -1)d,,,)=27/D,,

Source: Geopsy H/V tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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Linear Array: finite and discrete
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Figure 3.20 The aperture smoothing function magnimde |W (k)| for uniform shading is plotied
for a nine-sensor regular linear array. This spatial spectrumn has period & = 2x/d. The visible
region of the aperture smoothing function is that part for which —2Zm /A" < &7 < Zm/A°. What
might be called secondary mainlobes—those not located at the origin—are termed gratng lobes.

Source: Geopsy H/V tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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Time-offset box-car window: top) t-x and f-k domains. bottom) Slides at a
constant time and at a constant frequency

Source: Foti et al., 2013
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Linear Array: from shot gather to f-k 2

Frequency (Hz)

a
Based on: experimental dispersion curve

f-k transform Wavenumber (rad/m)
or Z-p transform

Time ()

Offset (m)

Slowness (s/m)

Frequency (Hz)

Source: Foti (2012)
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f-k spectrum (1D array) to dispersion curve

f-k spectrum Dispersion curve
1D array o rf _
E
N >
z S
> o
(&) ()
.
S J:
L o
experimental dispersion curve
Wavenumber (rad/m) Frequency (Hz)
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Slowness

vertical plane
n d_-l horizontal pl North
1 E 3 4 5 E T DrEon planme
b v v v v v v
.‘.:f _.ﬂ{ _.-"f ;f .-'-f _.:f _.-"FE
P T # # o F. P
# Y. # K # & # H
£ P ¥ # s -
F r F ol K s F) # 1 :
’ ’ ;oo 4 / s \\._____
# 7 F F A i i '
. # . # L. P # '
s # - # B ;
rd & I Y . rd
/ s # # &
F F i F
. - _.i" # - N
A 4 wave front
) F, )
_.r

Geometry of plane wave: parameters of wave propagation

Source: Geopsy F-K tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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Slowness
Z (Up) - slowness vector:
A u >in direction of
wave propagation
Y (North) »perpendicular to
wavefront
- »length ~ v,
=
. )((East) u = (uI"uy,u:)
u = —(sin(z)sin(0), sin(z) cos(@), cos(7))

Vo

- . 1
The slowness vector: U =u, . (Sin(#),cos(6),—-=)

tan(i)
- - sini
Horizontal slowness:  p =| Unor |= Ve
0

Source: Geopsy H/V tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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Transform-based methods: z-pvs. f-k

Z -p Method
s(x,t) o S(w, X)
U(w, p) = T XdxJ, (@ px)S(a, X)

U (w, p) o R(z, p)

1D Fourier Transform
Hankel Transform

1D Inverse Fourier Transform

f-k Method

2D Fourier Transform

AN~ N
Gk, == 3 g(x.t)e ()

=0 t
0<x,k<M-1,0<t,f<N-1
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Effect of windowing on a broadband wave: the wavelet has a flat spectrum and is not dispersive.
The spectral leakage creates a main lobe and side lobes.

Source: Foti et al., 2013
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Spatial aliasing illustrated with plane harmonic wave with decreasing velocity. The decrease of the
velocity produces a higher and higher wavenumber, that in the third panel reached the nyquist
wavenumber for the used spatial sampling. Spatial aliasing occurs, and apparent velocities are
negative in the panels on the right. The continuous line in the seismic gather represents the actual
phase velocity, the dotted line the apparent phase velocity. Source: Foti et al, 2013
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frequency
frequency

Y

L 4

0 +Kiyo 0 +Knyg +2Knyg

- Knyq
wavenumber

wavenumber

Unwrapping the negative quadrant of the f-k spectrum in off-end gathers

Source: Foti et al., 2013
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Spectral resolution at a constant frequency: the possibility of resolving two modes
with arrays of different lengths

Source: Foti et al., 2013
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Aliasing (example CMP gather)

Blue event aliased
above 30 Hz
{

FK TRANSFORM

TIME DORAITN F-b DORAAIN

o Ficbrilve CffscLim} WereT raamber (177
: 1D iode 4p a0 b
1 1 [ B R |

4 —| -
1

B .
L-1

Fracpm e g fHe)
—
]
iy
l.'-l'

. om—f.
E‘ iom—}| -
|=|:|:|—- . -

1am—} - Al - .

Source: http:/lwww.xsgeo.com/course/basic.htm
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Extension to 2D arrays: finite and discrete arrays

m
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similar story as for 1D-layouts,
BUT parametrization more difficult

dmin! N! Dmax (EIPEI'tI.II'E)

Source: Geopsy H/V tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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Extension to 2D arrays: finite and discrete arrays

m
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N clear
BUT: d,;, and D,., show directional dependence

especially there will always be some direction,
in which d_;, is vanishing!

limits of array geometry: A, > 2d_i., Amax~3D max

Source: Geopsy H/V tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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‘Advanced’ Beamforming

Problem with traditional beamforming:
what happens if one trace is contaminated by strong noise??

Solution:

Use spectral based beamforming (Barlett, Capon, MUSIC)

First Fourier transform time to frequency.

Then compute spatial covariance matrix.

Idea is to apply complex weights to sensors equivalent to spatial tapering, and to compute
optimum weights

Weights are not computed explicitly, but contained in covariance matrix.

Other example of advanced beamforming are parametric beamformers which include
penalty functions used to the spatial covariance matrix.

> Product of beamfor ate for f-k spectru ]
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. . Frequency Domain Beamformer
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(Foti et al., 2007)
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o ~ all frequency bandg < T
! 0.006 - JhE
%nu = ! fi‘:
i 275 i
032 Eﬂ.mﬂ-
3
W
b I‘ﬂI||’||'--\c-mrrE-:lZn'r.ni.'hn:u{l. -
|
Single time window -
f-k analysis result;
center frequency 4Hz "
bandwidth as fraction - -
0E 08 1 2 4 [£] & 10
of center frequency Frequency (Hz)

Source: Geopsy FK tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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Traditional definition

Forward problem

Inverse problem

Source: Snieder and Trampert, 1999

Mathematically, F[m]=d

F is the function of the direct problem (ex. geophysical problem), d is the data (given), and
m is the searched model.
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FORWARD PROBLEM

' Numerical

V=2 f
.................. - k

vs..?ﬂ z 7 =

V=

Wavelength A

1 Frequency f
Stiffness Short Long Dispersion Curve
protile wavelength wavelength ° .
High Low Experimental

frequency  frequency

INVERSE PROBLEM

Source: Foti, 2012
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FORWARD PROBLEM

Vertical particle motion

e

' Numerical

s | a8 S
) - <
[
Q
<

1. b
? 7 7 ( =
1 Frequency f
Stiffpess Short Long Attenuation Curve
protile wavelength wavelength ° ]
High Low Experimental

frequency  frequency

INVERSE PROBLEM

Source: adapted from Foti, 2012
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Forward problem

Appraisal problem

Estimation problem

Estimated model m

In general, inversion = estimation + appraisal

But, why IS m different than m?
1.non-uniqueness
2.real data is “contaminated’ with errors
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Non-uniqueness

ml m2 m3 m4 m

Which model?
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Lack of stability

F[m]=d
FIm+Am]=d+ Ad

measurement errors

If Ad> O then Ant> O

Small perturbations in the data may cause “grand” perturbations in
the parameters!!

M PAVIA

RISK CENTRE




@ EUCENTRE -
is?’ European Cerirs for Tralning and Rescarch In Earthquake Enginsering =7 /e 7
=

Non existence

2 ? Ame M : F[m]=d
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The mathematical formulation of inverse problems leads to models that typically are ill-
posed: According to Hadamard, a mathematical problem is called
well-posed if:

1. for all admissible data, a solution exists,
2. for all admissible data, the solution is unique and
3. the solution depends continuously on the data.

If one of these properties is violated, the problem is called ill-posed.

Problems of non-uniqueness, non-existence or solution stability mean that the problem is
“ILL-POSED"
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Neither existence nor uniqueness of a solution to an inverse problem are guaranteed.

In practical applications, one never has exact data, but only data perturbed by noise
are available due to errors in the measurements or also due to inaccuracies the

model itself.

Even if their deviation from the exact data is small, algorithms developed for well-posed
problems then fail in case of a violation of the third Hadamard condition (3. the solution
depends continuously on the data) if they do not address the instability, since data as
well as round-off errors may then be amplified by an arbitrarily large factor.

In order to overcome these instabilities one has to use regularization methods,
which in general terms replace an ill-posed problem by a family of neighboring
well-posed problems.
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If the solution does not exist, or is not unique, or is not stable WE MUST CONSTRUCT IT!!

-Redefine solution with a priori information
-Stabilize the solution with regularization methods
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Parametrization involved will influence the way the inverse problem is posed and its solution.

If fewer parameters than field data....... OVERDETERMINED
If parameters > field data.................... UNDERDETERMINED
If parameters ~ field data.................... EVENLY DETERMINED

For computational simplicity, we use finite and minimum set of parameters

Distribution of physical properties is uniquely determined if measurements span the
observational bandwidth [0 oo]

But, due to technical limitations, field observations are contained in a finite observation
interval, so field data is incomplete

M PAVIA

RISK CENTRE




e ) uss 7
Linear vs. Nonlinear inversion problems =~ = &

Linear problem:
Tx=y ex. Earth’s gravitational field

where T denotes a bounded linear operator acting between Hilbert spaces X
and Y .

Nonlinear problem: eX. Seismic tomography
F(x) =y

where F acts between two Hilbert spaces X and Y . The basic assumptions for a
reasonable theory are that F is continuous and is weakly sequentially closed,
i.e., for any sequence X, = X,F(x,) >Y

imply that xeD and F(X)=y

As opposed to the linear case, F is usually not explicitly given, but represents the
operator describing the direct (also sometimes called "forward”) problem.

Source: Engl and Kugler,
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Misfit Definition

Velocity CﬁlCUlatEd curve

Frequency

[
[ ng

||Z ("'r:ﬁ_"rc'f)z
Misfit = \I =~  o’n, ne number of frequency samples

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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Possible shapes for misfit function
A single narrow valley A larger valley
Level of
_— equivalence
Local minima and A truly flat valley

equivalent minima

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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Linear problem Nonlinear problem
S(m) S(m)

(a) (b)

Figure 3. (a) The least-squares nusfit function for a linear problem. (b) The conventional view
of the nusfit function for a nonlinear inverse problem.

Source: Snieder, 1998
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Discrete vs. continuous problems

Discrete models (finite number of degrees of freedom) vs. Continuous models (infinitely
many degrees of freedom)

In many practical inverse problems, one aims to retrieve a model that has infinitely many
degrees of freedom from a finite amount of data. It follows from a simple variable count
that this cannot be done in a unique way.

For practical purposes, we model the problem as having a finite number of parameters
(in geophysics, this is usually NOT true!!)
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Simple Linear Regression

n data pairs {(X1 Y1), (X5, Y5, (Xn’yn .
vertical distance

Regression line: Y =a+bx between ith data point
/ and regression line
Yi =

Least Squares Method

Minimize error such that we minimize:

S :ieiz :i(yi _abxi)2
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Minimize: S = Zeiz = Z(yi —abx;)’
=1 i=1

—_ J—

05 -0 Zn:Z(yi—a—bxi)(—l):O leanZ_l:in :leyi

g — —
Boo| Yat-a-)x)=0 | Rax2b =2 xy
i=1 i=1 i=1 i=1

-

y
Slope of fitted line: = 2 -2, XZZV /
ny x> —(> x)

L _2Y~b) X

X
If more than 2 model parameters: MULTIPLE REGRESSION ANALYSIS
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Matrix Formulation e——— T -

d=Gm,m=G™d For perfect data...

But, usually we have...
d=Gm+e

i=1

n p
Minimize:: " (d, - G,m,)* = (d —~GM)"(d ~GM) =d"d —d"Gm-m'G"d + m'G'Gm)
j=1

=-d'G-G'd+G'Gm+m'G'G=0

2G'Gm=2G"'d | Normal equations

m=[G'G]"G'd Forimperfect datal
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m=[G'G]'G'd How do we solve for the inverse?

Examples:

-Cramer’s Rule

-Gauss Elimination Method
-Gauss-Jordan Elimination Method

-Lu or Triangular Decomposition Method
-Singular Value Decomposition
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Constrained Linear Least Squares Inversion

This is inversion with a priori information.
First, why do we add a priori information?

Because it helps single out a unique solution out of the infinitely many plausible solutions to
the problem if there are observational errors and uncertainties.
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Constrained Linear Least Squares Inversion

/Dm =h  We bias m toward h.

k= (\ SEVENTH FRAMEWORK
PROGRAMME

diagonal ¢ =(d-Gm)"(d-Gm)+ £°(Dm—h)" (Dm-h)
Need 99 =0
om,

S0,2G'Gm-2G"d +24°D'Dm-24°D'h=0
(G"G + B’D'D)m=G"d + g2D"h ‘Normal Equations’

D=l
(G"G + 1)m=G"d + A%h
mCONSTRAINED = (GTG + ﬂZ I )_1(GTd +182h)

[ is an auxiliary parameter, which chosen by trial and error. It is called the
Lagrange multiplier.

s £ E =
. | 7 / . k
2 T = . . 1 g - €
- = '-i__~_f*= - = “‘A‘ e R e U T | W
e 3 ". = B B S = s .
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Inversion with Smoothness Measures

Question: Can a solution be stabilized if no prior estimate is available? Yes, inversion
with smoothness measures.

This is another remedy for non-uniqueness... when in doubt, SMOOTH!!

Minimize (m1-mz2), (M2-ms), (Mp-Mp-1)

1 -1 ml 0
m2 0

1 '1 m3 — 0

1 -1 |mp 0

Also called the Marquardt damped solution.
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Error Analysis - Observation Error

How do the experimental errors translate into errors in model estimates?

If we know the observational errors, we can incorporate them in the problem formulation
Hence, we will be getting a weighted solution

Usual assumption: Standard data errors o i are of a Gaussian distrubution with zero mean.

di

We essentially weigh each datum by its associated observational error: a
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Uncertainty in forward model

Figure 1.4. a) If uncertainties in the forward modelization can be neglected, a
functional relationship d = g(m) gives, for each model m, the predicted (or calculated)
data values d. b) If forward-modeling uncertainties cannot be neglected, they can be
described, giving, for each value of m, a probability density for d that we may denote
#(dim). Roughly speaking, this corresponds to putting vertical uncertainty bars on the
theoretical relation d = g(m).

Source: Tarantola, 2005
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Assessing the quality of the solution

Goodness-of-fit: the commonly used model acceptance criterion.
Assumptions: di is normally distributed with known o'

- n (d.. —G.m.)?
Statistical parameter g q= Z( obs 74 i) i=1p

i=1 0;

In practive, a model with n— p < g < n++/2nis acceptable,

If g>> n the model underfits the data
If g<<n the model overfits the data (contains computed artifacts).

(d _Gijmj)2

2

iobs

Root-Mean-Square RMS = 1 Zn:

ns o
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Assessing the quality of the solution (contﬁ.b)

-Parameter Resolution Matrix R

1.Unconstrained solution: m={(G'G)"G'}d

R=HG=(G'G)'G'G =1
R has dimension p x r where p are the parameters and r the number of non-zero eigenvalues
If R = | then each parameter is uniquely defined, and the resolution is perfect!

G'G

2.Marquardt damped solution (smoothing) R=(G'G+A1)'G"G=1+
Solution is not perfect (R is not I)

3.Inversion with a priori data (constrained)
R=(G'G+A°D'D)'G'G+(G'GS*D'D)*sD" 4D
=(G'G+p°D'D)(G'G+4°D'D) =1

Constrained solution with a priori parameters has perfect resolution

[ PAVIA

RISK CENTRE




SEVENTH FRAMEWORK
PROGRAMME

Assessing the quality of the solution (cont@.ﬁ)

-Parameter Resolution Matrix R

Comment: Resolution matrix is only an experimental design guide. A perfect resolution does
not imply an accurate or reliable model! In general, it is overstated in geophysical inversion
literature.

If R=I this means the solution may be found

If Rzl then true solution may not be found
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Inversion Techniques T L

Forward problem:
Analytic or numerical processing
Only one solution

Inverse problem:

Trial and error to adjust parameters of the model
Simplex downhill method

Brute force uniform search (gridding)

Least square methods (based on derivatives)
Brute force Monte Carlo sampling

Simulated Annealing

Genetic Algorithm

Neighborhood Algorithm

Generally not only one solution

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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How do we search the model space: Local vs. global search algorithms

Local search algorithms can be used on problems that can be formulated as finding a
solution maximizing a criterion among a number of candidate solutions. Local search
algorithms move from solution to solution in the space of candidate solutions (the
search space) by applying local changes, until a solution deemed optimal is found or a
time bound is elapsed.

Local algorithms result in ONE solution.
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Inversion Techniques T Ze

How do we search the model space: Local vs. global search algorithms

Global search algorithms sample a large portion of the model space, and detect
several local maxima.

The strategy adopted in a global search method varies according to different
philosophies, some of which include genetic algorithms, fractal inversion, neural
network inversion, enumerative methods, and Monte Carlo simulation.

Global-search procedures are in general more expensive than local-search procedures,
both in terms of time and computer resources.

However, they are more robust and reliable compared to the latter.

Global search algorithms provide several solutions.
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A. Uniform search (gridding)

A

- If nd > 3 : number of forward
L computations are prohibitive
o0
+ Complete exploration of the

oo e parameter space

Parameter 2

+ Optimum error estimates

Misfit
>
Y
Parameter 1 1.0
2.0

- 5.0

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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B. Iterative methods (optimization) = = T
Least Square, Simplex, Gradient Methods...

Least Square, Simplex, Gradient methods, ...
Misfit

Optimum - 0.5

\.‘ 10
20

- 5.0

" Start - Easily trapped in local minima
- Non-uniqueness <=> choice
,  of starting model
- Bad error estimates
Parameter 1 - Cannot include prior information

Parameter 2

+ High dimensionality
+ Few forward computations

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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r'y

o0 o ° - Requires lot of forward

computations

® + Not too bad exploration of
the parameter space

Parameter 2
L
@

+ Good error estimates

> Misfit
Parameter 1 - 0.5

1.0
2.0

- 5.0

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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D. Oriented random search
(Simulated Annealing, Genetic Algorithms, and Neighbourhood Algorithm)

4 + Requires less of forward
® o computations than MC

- Max nd ~ 25-50

* ® + Not too bad exploration of
the parameter space

Parameter 2
®
@
[ ]

+ Good error estimates
e® Misfit
o® m

> 05

Parameter 1 10
2.0

- 5.0

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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Solution of the Rayleigh Inverse Problem

non-linear linear
FORWARD
medium parameters dispersion and attendation
{0(2),V'p(2),V's(2)} curves Vr(w) and ar(w)
INVERSE

Well-posedness must observe three conditions (Tikhonov and Arsenin, 1977; Engl, 1993):
a. For all admissible data, a solution exists.

b. For all admissible data, the solution is unique. |
¢. The solution depends continuously on the data. usually violated
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Solution of the Rayleigh Inverse Problem

Nonunigueness either because lack of sufficient information to constrain solution OR information
available may not be independent

Two remedies are a priori information, and smoothness and regularity
Simple for ideal error-free observation. More complex for data containing bias and random errors.

Source Lai et al., 1998

M PAVIA

RISK CENTRE




e EUCENTRE
7 European Centre for Training and Research in Ear

thquake Engineering ‘¥ ) Sapare Aude j;;;;
o s B SEVENTH FRAMEWORK
o~ PROGRAMME

Solution of the Rayleigh Inverse Problem

Violation of continuity: solution is very sensitive to perturbations in the data

A stability analysis by means of singular-value expansion method (Menke, 1989; Engl|,
1993) shows the smallest singular value which controls amplification of the measurement
errors. The rate of decay of the singular values arranged in order of decreasing magnitude
IS used as a measure to quantify the degree of instability of inverse problem.

For very unstable problems there are mathematical techniques, called regularization
methods, that approximate the ill-posed problem with a parameter-dependent family of
neighboring well-posed problems (Tikhonov and Arsenin, 1977; Engl, 1993).

Because some of these regularization methods can also be applied to non-linear inverse
problems given that they admit a varriational formulation where the objective is the
minimization of appropriate functionals.

Source Lai et al., 1998
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Coupled vs. Uncoupled Analysis

Coupled analysis
(dispersion and the attenuation curves are inverted simultaneously)

Uncoupled analysis
(curves are inverted separately)

Coupled analysis is more stable than uncoupled analysis!

Also uncoupled analysis is restricted by the assumption of weak dissipation,
whereas coupled is not!

Source Lai et al., 1998
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Coupled vs. Uncoupled Analysis

Coupled analysis is more stable than uncoupled analysis! Why?

-In uncoupled inversion, the solution is not independent because errors from
dispersion inversion carry over to attenuation inversion.

-In coupled no negative coupling effect because both sets of experimental
data are inverted simultaneously in a single, complex-valued, inversion.

-extra internal constraint that is embedded in the formalism of the complex
inversion. The intimate connection between the real and the imaginary parts
of the variables involved in the simultaneous inversion adds a built-in
constraint that makes the coupled inversion a better-posed problem.

Source Lai et al., 1998

M PAVIA

RISK CENTRE




= EUCENTRE
- ST IUSS
European Centre for Training and Research in Earihq g Vo E o/ S e
st ~ SEVENTH FRAMEWORK
i PROGRAMME

Inverse Problem of Rayleigh Waves

| I 1
Type of Inversion ‘ Type of Analysis ‘T}‘pe of Response FL]_ﬂ.EEiDﬂ‘
1
I 1
Global-Search-Methods | Uncoupled Analysis | Frequency Domain | ‘ Time Domain |
Local-Search-Methods | Coupled Analysis . . )
Dispersion and Short/Long Period
- : Attenuation Functions Seismograms
Unconstrained '

Optimization Displacement Functions

[Complex Spectra]

Constrained

Opumization

|— Occam's Algorithm

Algorithms for the Solution of the Rayleigh Inverse Problem

Source Lai et al., 1998
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Uncoupled Inversion
]

[
Fundamental Mode Analysis

[UFUMA]
|

I 1
Shear Wave Velocity Shear Damping Ratio
Inversion Inversion

Non-Linear Inversion
Vi = Vr(Vs)
[Compute Ve using first mode only]
]
i
]
Experimentally
obtain Vr(w) from
linear regression
arg[wirm)] =a+ kar

M PAVIA
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Linear Inversion
ox=GDs
[Compute G using first mode only]

Experimentally
obtain Otr(w) from
non-linear regression
[wirm)| = F; G(r,m)exp(-ccr)

MNon-Linear Inversion
[wir.m)| = F; Gv(r.m) exp(-GDs r)
[Account for aw — cen(r) = GDs)

I
Equivalent Multi-Mode Analysis

1
Effective Multi-Mode Analysis

[UEQMA] [UEFMA]
| 1
I 1 I 1
Shear Wave Velocity Shear Damping Ratio Shear Wave Velocity Shear Damping Ratio
Inversion Inversion Inversion Inversion

Linear Inversion
Otriern) = Giemy Ds
[Ignore dependence Gem= Gim{r)]
n

Non-Linear Inversion
Vaen= Viem(Vs)
[Ignore dependence Ve =Viem(r)]

Non-Linear Inversion
Viiem = Vinam(Vs)
[Account for Viem = Vien(r)]

Non-Linear Inversion
[wir,m)| =F, G,(r.m) exp(-GemDs r)
[Accounts for Geas = Ger(r)]

1 1 I
1 1 1
1 ] :
Experimentally Experimentally I Experimentally Experimentally
obtain We.m(w) from obtain Otwem(w) from L obtain Veem(w, r) from obtain [wi(r.m)|
linear regression non-linear regression Vienfw, r}. = u:.-&r}.-&g at each mceivgr location
arg[w(r.w)] = a + ksear wiro)| = F, G,(r,m Jexp(-csiem 1) at each receiver spacing and at various
Displacement Phase Spectra

Non-Linear Inversion
arg[w(r.w)] = ¢(Vs)

Experimentally
obtain arg{wi{r.w)]
at each receiver location
and at various w

Source Lai et al., 1998
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Coupled Inversion

]
[ | 1
Fundamental Mode Analysis Equivalent Multi-Mode Analysis Effective Multi-Mode Analysis
[CFUMA] [CEQMA] [CEFMA]

Shear Wave Velocity and
Shear Damping Ratio
Inversion

Non-Linear Inversion
Vi =Vr(Vs)
[Compute Vr using first mode only]
(Note: Vr and Vs are complex-valued)

Experi:':lenlally
obtain Vr(m) and Ok(w@)
from non-linear regression
T(r.o) = G(r.u) exp(-ike r)

M PAVIA
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Shear Wave Velocity and
Shear Damping Ratio
Inversion

Non-Linear Inversion
Ve = VRiem( VS)
[Ignore dependence Vriem = Veiea(r)]
{Note: Veand Vs are complex-valued)

Experil:lentnlly
obtain Veem(@) and Crem{m)
from non-linear regression
T(rw) = Gir.o) exp(-ikgemr)

Shear Wave Velocity and
Shear Damping Ratio
Inversion

]
| |
Non-Linear Inversion Complex Displacement Specira
Viien = VRen(Vs) MNon-Linear Inversion
[Account for Veiem = Veen(r)] wir,m) =w(Vs)
(Note: Vi and Vs are complex-valued) {Note: wir.m) and Vs are complex valued)

Experimentally
obtain w(r.m) from
arg[w(rm)] and [wir.m)|
at each receiver location

Experimentally
obtain Vees(r,m) and Orem(r,m)
iteratively from solving
T(r.m) = G(r.0) exp[-1"¥rir.o)]

Source Lai et al., 1998
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Two selected algorithms:
Occam’s and Neighborhood Algorithm
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Occam’s Algorithm &EUCENTRE - (& ) s _7;

-References: Constable et al., 1987: Parker, 1994

-Programmed into SWAN (http://www.geoastier.it/)

-Local search algorithm

-Summary: given a set of experimental data and their associated uncertainties, find the
smoothest profile of model parameters subject to the constraint of a specified misfit
between observed and predicted data.

-The development of this class of algorithms was motivated by the following
observations:

..The solution of a parameter identification problem relies on the ability to synthetically
reproduce a set of experimental data by means of a mathematical model describing a
particular physical problem.

.. In discrete inverse theory, the mathematical model is assumed to depend on a

certain number of unknown model parameters, whose determination is the objective of

the inversion algorlthm
[ PAVIA e
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/_l SOLUTION OF THE COMPLEX RAYLEIGH EIGENPROBLEM

Find Roots of the
Dispersion
Equation

Compute
Eigenfunctions

'

o

Compute Partial
Compute Green’s < Computc Btfective < DP"WU‘.:?S
Function Velocity & Partial _—a{\' ) |
Derivatives {alv), |
1

/

/ | OCCAM’'S INVERSION ALGORITHM | \

NO

YES

Solution of Linearized Inverse Problem

forasw[w), | Twon), Jv -

wfwo, v

SEVENTH FRAMEWORK
PROGRAMME

wr’ European Centre for Training and Research in Earthquoke Engineering Y ey Pty
= (\

Occam’s Algorithm

Select a New Profile
V... =(v., +av., )




Neighborhood Algorithm @EUcENTRE | (& )!y..s@.
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-References: Sambridge, 1999; Wathelet, 2008
-Programmed into geopsy (http://www.geopsy.org/
-Global search algorithm

-Search globally then refine search.

Misfit
= 0.5

1.0
2.0

- 5.0

Parameter 2

Parameter 2

Parameter 1

Parameter 1
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Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD




Neighborhood Algorithm

m
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From model A

add “valid” random
perturbations so
that model B stays
in cell k

Loop over all axes

L]

= ELUUCENTRE

wr’ European Centre for Training and Research in Earthquoke Engineering

A modified Neighborhood kernel:
irregular parameter boundaries
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Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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Parameter ranges f Random
& L value for p,
Parameter conditions

1

! _ ™
All Limits for p
R;g?ng conditions when p, (j#i) |

OK? fixed

Internal first model initialization

Generate Ns random models
by adding pertubations to
initial model

Neighbourhood
iterations

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD
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Strategy: Why not compare if we canE’

O I I I I T
I. Neighborhood Algorithm 2 Layer & H-S Model
= Neighborhood Algorithm 3 Layer & H-S Model
5S¢ Occam Algorithm 2 Layer & H-S Model
= Occam Algorithm 3 Layer & H-S Model
107 _I _
€ 151 \_ -
e
o
A 20+ -
251 -
301 -
35 | | ] i | | |
0 100 200 300 400 500 600 700 800
Shear-wave Velocity
Example: Hospital complex, Iseo, Italy.
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