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Seismograms as signalsSeismograms as signals



Seismic Seismic recordingsrecordings
Seismogram: A recording of particle displacement/velocity/acceleration or pressure with time
In surface wave methods, the most common seismograms are velocity-meters.

Other distinctive features:
Frequency range characteristics (frequency bandwidth, cut-off frequencies)
Particle motion range characteristics (strong, intermediate, weak motion)
Permanent vs. temporary deployment
1-component vs. 3-component
Surface (1D – 2D) vs. downhole
Single station vs. multi-station

4



ComplexComplex numbersnumbers (background)(background)

The complex plane:Polar vs. rectangular coordinates:

-Magnitude: 
-Angle: 

cos( ) sin( )je jθ θ θ= +z  rcos( ) jrsin( )
i

z
z re θ

θ θ= +

=

z x jy= +
Euler’s formula:

Source: https://ccrma.stanford.edu/~jos/st/Fourier_Transforms_Continuous_Discrete_Time_Frequency.html

(rectangular coordinates)

(polar coordinates)
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Signal TransformationsSignal Transformations
Background MathematicsBackground Mathematics



Fourier Fourier TransformsTransforms
Sampling: Continuous vs. Discrete
Duration:  Infinite vs. Finite 

Hence, four different definitions for the Fourier Transform:

Source: https://ccrma.stanford.edu/~jos/st/Fourier_Transforms_Continuous_Discrete_Time_Frequency.html
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Fourier Fourier TransformsTransforms

Source: http://www.dspguide.com/ch8/1.htm

Everything we do 
in a computer 

is DFT!!
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Fourier Fourier TransformsTransforms
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Discrete  Fourier Discrete  Fourier TransformTransform (DFT)(DFT)
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Inverse Discrete  Fourier Inverse Discrete  Fourier TransformTransform (IDFT)(IDFT)
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Discrete  Fourier Discrete  Fourier TransformTransform (DFT)(DFT)

Source: http://www.dspguide.com/ch8/1.htm
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Source: http://www.dspguide.com/ch8/1.htm

DFT DFT exampleexample
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DFT DFT basisbasis functionsfunctions
[ ] cos(2 / )
[ ] sin(2 / )

k

k

c i ki N
s i ki N

π
π

=

=

ck and sk contain N points: i=0,…,N-1
k determines the frequency of the basis function, which can range from 0 to N/2

N points
t

g
N/2 numbers 
representing 
amplitude of ck

N/2 numbers 
representing 
amplitude of sk

g(t)      Ɔ G(f)     =     Re{G(f)}       +       Im{G(f)}
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DFT DFT basisbasis functionsfunctions

Example: 
32 point DFT contains 
17 discrete cosine waves (real part) 
and 17 discrete sine waves (imaginary 
part) 

Source: http://www.dspguide.com/ch8/1.htm

c0 means 0 cycles in N points
c1 means one cycle in N points
c2 means two cycles in N points
…
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Synthesis Equation
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DFT vs. DTFTDFT vs. DTFT
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The DFT is the transform of a limited number of samples of a periodic signal (whether or 
not the actual signal is in fact periodic).

The DTFT is a transform of the ENTIRE sampled signal from -∞ to + ∞, and the input 
isn't necessarily periodic.

One is mathematical and precise (DTFT), the other is physically realizable (DFT).

DFT:  time domain is discrete and periodic with period T.
frequency domain is discrete and periodic.

DTFT: time domain is discrete and not necessarily periodic.
frequency domain is continuous and periodic.

DFT vs. DTFTDFT vs. DTFT
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Source: http://www.dspguide.com/ch10/3.htm

DFT in DFT in timetime domaindomain
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DFT

Source: http://www.dspguide.com/ch10/3.htm

DFT in DFT in frequencyfrequency domaindomain
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Problem: match points with cosines, of different frequency and phase?
Answer: family of solutions….

Why ‘bother’ with negative frequencies? Source: http://www.dspguide.com/ch10/3.htm

DFTDFT
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Why ‘bother’ with negative frequencies 
(and “negative” time)?

Some DSP operations don’t require knowledge of negative frequencies.
Example in spectral analysis sufficient to see frequency domain from 0 to ½ fs.

However, many DSP operations require knowledge of negative frequencies, as 
signals may overflow between periods causing time and frequency domain aliasing.

DFTDFT
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Periodicity in time domain  + processing

Periodicity in frequency domain  + processing

frequency domain aliasing

time domain aliasing

DFT and DFT and aliasingaliasing
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Source: http://www.dspguide.com/ch10/3.htm

DFT and DFT and aliasingaliasing
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-solve simultaneous linear equations
-correlation method
-Fast Fourier Transform

Why FFT?  IT IS FAST!!! From walking… to a jet aircraft!!!

HowHow can can wewe calculatecalculate the DFT?the DFT?
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FFT FFT forfor signalsignal processing processing engineersengineers

Source: http://www.dspguide.com/ch10/3.htm
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A lot of complex operations!!!!

FFT FFT forfor signalsignal processing processing engineersengineers
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UsefulUseful operationsoperations: : 
ConvolutionConvolution

1

0
( * ) ( ) ( )

N

n
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x y x m y n m
−

=

= −∑

Source: https://ccrma.stanford.edu/~jos/mdft/Convolution_Example_3_Matched.html

Convolution is cumulative:

* *x y y x=

(f *g)   Ɔ F x G
(F*G)  C  f x g

Convolution Theorem 
(multiplication in one domain is convolution in the other domain):

[1,1,1,1,0,0,0,0]
[1,0,0,0,0,1,1,1]

y
h
=
=

Convolution is associative:

*( * ) ( * )*x y z y x z=
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ConvolutionConvolution asas ImpulseImpulse ResponseResponse

( ) ( ) ( ) ( ) ( )t h t h t t h tδ δ∗ = ∗ =

Source: http://www.dspguide.com/ch6/2.htm
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UsefulUseful operationsoperations: : 
CorrelationCorrelation
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Special Case: autocorrelation

Correlation is a statistical measure of how similar two waveforms are.

The DFT of the correlation is called cross-spectral density, or cross-spectrum:

Normalized correlation:
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SummarySummary: : UsefulUseful operationsoperations

Source: http://faculty.kfupm.edu.sa/EE/muqaibel/Courses/EE207%20Signals%20and%20Systems/EE207%20SignalsAndSystems3.htm
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Common Fourier Common Fourier TransformsTransforms

Source: http://brokensymmetry.typepad.com/photos/uncategorized/2008/06/19/transform_pairs_3.gif
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SamplingSampling in the in the timetime domain domain –– SpectralSpectral LeakageLeakage

Sampling in the time domain (multiplication by shah), implies 
convolution in the frequency domain by shah. The convolution 
causes periodic repetition of the spectrum. If sampling in time 
domain is coarse, then repeated spectra are close to each other,
causing spectral leakage.
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NyquistNyquist­­ShannonShannon samplingsampling theoremtheorem

If a function x(t) contains no frequencies higher than B Hz, it is completely determined by 
giving its ordinates at a series of points spaced 1/(2B) seconds apart.

In other words, the sampling rate must be twice the highest frequency (fNyquist) in order to be 
able to reconstruct the signal.

Signal frequencies higher than the Nyquist frequency will encounter a "folding" about the 
Nyquist frequency, back into lower frequencies.  Ex. Sample rate 20Hz, Nyquist is 10Hz, then 
11Hz signal will fold to 9Hz, similarly, a 9Hz can fold to 11 Hz.

1 1
2 2Nyquist samplingf f

dt
= =

Nyquistf

Source:   http://en.wikipedia.org/wiki/Nyquist_frequency
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Source: Foti et al., 2013

SamplingSampling in the in the timetime domain domain –– SpectralSpectral LeakageLeakage
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Source: Foti et al., 2013

Nyquist Nyquist frequencyfrequency::
adequateadequate//inadequateinadequate samplingsampling
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Source: Foti et al., 2013

Nyquist Nyquist frequencyfrequency::
adequateadequate//inadequateinadequate samplingsampling
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AntiAnti­­alias alias filteringfiltering

An anti-aliasing filter is a filter used before a signal sampler, to restrict the 
bandwidth of a signal to approximately satisfy the sampling theorem.
Often, an anti-aliasing filter is a low-pass filter.

Brick-wall filter is unstable, 
Instead choose filter with transition region:

http://www.maximintegrated.com/app-notes/index.mvp/id/928
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Source: Foti et al., 2013

EffectEffect of of windowingwindowing
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TaperingTapering

All signals which are finite in the time domain, imply multiplication by a boxcar in  the time 
domain, which corresponds to convolution by sync in the frequency domain.

Convolution by sync causes ‘smearing’, which is a relatively localized spreading of frequency 
components. The shorter the boxcar, the longer the sync function, and the worse is the 
smearing effect.

To reduce leakage, it is advised to have longer recordings in time, and/or to use tapering 
windows in the time domain, which behave better in the frequency domain. Examples of  taper 
window could be Hamming, Hann, Blackman, Gaussian, Tukey, Kaiser window, etc. 

Source: http://brokensymmetry.typepad.com/photos/uncategorized/2008/06/19/transform_pairs_3.gif
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TaperingTapering: : ExamplesExamples

Source: http://en.wikipedia.org/wiki/Window_function
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DynamicDynamic RangeRange

Dynamic range is the ratio between the largest and smallest possible values of the signal.
Usually measured as a base-10 (decibel, dB) or base-2 logarithmic (stops) value. 

SignalSignal toto NoiseNoise RatioRatio (S/N)(S/N)
S/N is a measure of the desired signal to the level of background noise.

Alternatively, can define it based on ratio of mean to standard deviation of the signal:

2

/ signal signal

noise noise

P A
S N

P A
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

/S N µ
σ

=

41



FilteringFiltering
Depending on the application, a filter may be applied equivalently as multiplication in the 
frequency domain, or a convolution in the time domain.

Common filters:
Low-pass (high-cut), high-pass (low-cut), bandpass filter

Source: http://syahit-at-utm.blogspot.gr/2012/11/30-oct-2012.html#!/2012/11/30-oct-2012.html
http://www.songsofthecosmos.com/images/bandpass_filter.gif

42



An acausal filter is a filter which does not change the phase of the signal, whereas a causal 
filter may change the phase of the signal.

Source: http://www.sciencedirect.com/science/article/pii/S0165027012002361

FilteringFiltering
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UncertaintyUncertainty PrinciplePrinciple ((HeisenbergHeisenberg­­GaborGabor limitlimit))
A function cannot be band-limited both in time and frequency.

Stated alternatively, "one cannot simultaneously localize a signal (function) in both the time 
domain (f) and frequency domain (Fourier transform)". 

When applied to filters, the result is that one cannot achieve high temporal resolution and 
frequency resolution at the same time; a concrete example are the resolution issues of the 
short-time Fourier transform– if one uses a wide window, one achieves good frequency 
resolution at the cost of temporal resolution, while a narrow window has the opposite trade-
off.

Let T be the duration of the signal, and B be its badwidth, then: 1TB ≥
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Signal TransformationsSignal Transformations



WhyWhy shouldshould wewe transformtransform fromfrom timetime and and spacespace toto
frequencyfrequency and wavenumber??and wavenumber??

Wavefield transformations allow the separation and identification of different seismic events. 

Common wavefield transformations, which involve Fourier transform: f-k, τ-p, ω-p

By means of wavefield transformations we can separate different types of waves (P- S- and 
surface waves). Hence, f-k transformation is a powefull tool to isolate, and filter out unwanted 
signals (noise).

46



WaveWave EquationEquation
A particularly useful class of solutions:

Where k is defined as the wavenumber:

In fact, k could be a vector in 3D.

This constitutes a function of both wavenumber and frequency. To analyze it we need 
to introduce 2D Fourier transforms.

[ ]( )( , ) cos( ) sin( )i t kxu x t Ae A t kx i t kxω ω ω±= = ± + ±

k
v
ω

=
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Fourier Fourier TransformTransform: 2D: 2D
Single component:  ex. particle velocity as a function of time: V(t) from which we can, using 
Fourier transform, obtain the magnitude and phase spectra.

Multi-component:    Use 2D Fourier transform theory.  From t-x to f-k domain.

g(x,t)     Ɔ G(k,f)
1 1 2
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For 2D DFT, F and f are matrices of size M x N
(For 1D DFT we only had vectors!)

ForwardForward and Inverse 2D DFTand Inverse 2D DFT

DFT

IDFT
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PhysicalPhysical MeaningMeaning of 2D DFTof 2D DFT

f(m,n) is a linear combination of complex exponentials                

with complex weights:  

22
,

nlmk jj
NMe e

ππ −−⎧ ⎫
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( , )F k l
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PhysicalPhysical MeaningMeaning of 2D DFTof 2D DFT

Complex weights can be written in polar form as:  

Amplitude:

Phase:

51



Fourier Fourier TransformTransform: 2D: 2D

Benefits of 2D Fourier transform (examples):
Filtering: May separate several phases (i.e. ground roll, seismic 
interference) in the f-k which cannot be separated in the t-x doman. 
Hence, the idea is to do a Fourier 2D transform, apply an f-k filter, and 
apply an inverse Fourier 2D transform, thereby eliminating undesired 
phases.
Surface wave dispersion analysis: selecting the dispersion curve 

used in shear-wave velocity inversion
Source:  Song et al, 2009.
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Analogue:

Recording finite and discrete signal in time:

Recording finite and discrete signal in space:

Source: Geopsy H/V tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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Linear Linear ArrayArray: finite and discrete: finite and discrete

Array measurements can be seen as a discrete spatial sampling (receiver locations) 
of a continuous process (seismic wavefield)

For 1D linear arrays with equidistant spacing, the equivalence to time series sampling is 
straightforward:

Time Domain Spatial Domain

* apparentmin / 2T T∆ < *
min / 2x λ∆ <

2 / (( 1) )N Tω π∆ = − ∆ min max2 / (( 1) ) 2 /k N d Dπ π∆ = − =

Source: Geopsy H/V tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 

54



Linear Linear ArrayArray: finite and discrete: finite and discrete

Source: Geopsy H/V tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 

55



Time-offset box-car window: top)  t-x and f-k domains. bottom) Slides at a 
constant time and at a constant frequency

Source: Foti et al., 2013

2D 2D WindowingWindowing
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Linear Linear ArrayArray: : fromfrom shotshot gathergather toto ff­­kk

Based on:
f-k transform
or τ-p transform
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Source: Foti (2012)
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Geometry of plane wave: parameters of wave propagation

Source: Geopsy F-K tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 

SlownessSlowness
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Source: Geopsy H/V tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 

1(sin( ),cos( ), )
tan( )horu u

i
θ θ

→

=The slowness vector:

sin| |hor

o

ip u
V

→

= =Horizontal slowness: 

SlownessSlowness
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TransformTransform­­basedbased methodsmethods: : τ-p vs. f-k
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2D Fourier Transform

τ-p Method

f-k Method
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Effect of windowing on a broadband wave: the wavelet has a flat spectrum and is not dispersive. 
The spectral leakage creates a main lobe and side lobes. 

Source: Foti et al., 2013

Linear Linear ArraysArrays
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Spatial aliasing illustrated with plane harmonic wave with decreasing velocity. The decrease of the 
velocity produces a higher and higher wavenumber, that in the third panel reached the nyquist
wavenumber for the used spatial sampling. Spatial aliasing occurs, and apparent velocities are 
negative in the panels on the right. The continuous line in the seismic gather represents the actual 
phase velocity, the dotted line the apparent phase velocity. Source: Foti et al., 2013

Linear Linear ArraysArrays
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Unwrapping the negative quadrant of the f-k spectrum in off-end gathers 

Source: Foti et al., 2013

Linear Linear ArraysArrays
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Spectral resolution at a constant frequency: the possibility of resolving two modes 
with arrays of different lengths

Source: Foti et al., 2013

Linear Linear ArraysArrays
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AliasingAliasing ((exampleexample CMP CMP gathergather))

Blue event aliased 
above 30 Hz

Source: http://www.xsgeo.com/course/basic.htm
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2D array transformations2D array transformations



ExtensionExtension toto 2D 2D arraysarrays: finite and discrete : finite and discrete arraysarrays

Source: Geopsy H/V tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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ExtensionExtension toto 2D 2D arraysarrays: finite and discrete : finite and discrete arraysarrays

Source: Geopsy H/V tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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‘‘AdvancedAdvanced’’ BeamformingBeamforming
Problem with traditional beamforming: 
what happens if one trace is contaminated by strong noise??  

Solution:
Use spectral based beamforming (Barlett, Capon, MUSIC) 
First Fourier transform time to frequency.
Then compute spatial covariance matrix.  
Idea is to apply complex weights to sensors equivalent to spatial tapering, and to compute 
optimum weights 
Weights are not computed explicitly, but contained in covariance matrix.

Other example of advanced beamforming are parametric beamformers which include 
penalty functions used to the spatial covariance matrix.

Product of beamforming is estimate for f-k spectrum
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FromFrom ff­­k k analysisanalysis toto dispersiondispersion curvecurve

Source: Geopsy FK tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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Forward and inverse modelingForward and inverse modeling
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TraditionalTraditional definitiondefinition

Source: Snieder and Trampert, 1999

Mathematically, F[m]=d

F is the function of the direct problem (ex. geophysical problem), d is the data (given), and 
m is the searched model.
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Determining VsDetermining Vs

Source: Foti, 2012
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Determining QsDetermining Qs
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Source: adapted from Foti, 2012
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In general, inversion = estimation + appraisal

But, why is m different than m?
1.non-uniqueness
2.real data is “contaminated’ with errors

~
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NonNon­­uniquenessuniqueness

m1 m 2 m 3 m 4 m

d

Which model?
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F[m]=d
F[m+Δm] = d + Δd  

measurement errors

If Δd    0  then Δm     0 

Small perturbations in the data may cause “grand” perturbations in 
the parameters!!

LackLack of of stabilitystability

81



Non Non existenceexistence

m

d

: [ ]m M F m d∃ ∈ =? ?
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The mathematical formulation of inverse problems leads to models that typically are ill-
posed: According to Hadamard, a mathematical problem is called
well-posed if:

1. for all admissible data, a solution exists,
2. for all admissible data, the solution is unique and
3. the solution depends continuously on the data.

If one of these properties is violated, the problem is called ill-posed.

Problems of non-uniqueness, non-existence or solution stability mean that the problem is 
“ILL-POSED”

IllIll­­posedposed problemsproblems
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Neither existence nor uniqueness of a solution to an inverse problem are guaranteed.

In practical applications, one never has exact data, but only data perturbed by noise 
are available due to errors in the measurements or also due to inaccuracies the
model itself. 

Even if their deviation from the exact data is small, algorithms developed for well-posed 
problems then fail in case of a violation of the third Hadamard condition (3. the solution 
depends continuously on the data) if they do not address the instability, since data as 
well as round-off errors may then be amplified by an arbitrarily large factor.

In order to overcome these instabilities one has to use regularization methods,
which in general terms replace an ill-posed problem by a family of neighboring
well-posed problems.

IllIll­­posedposed problemsproblems
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If the solution does not exist, or is not unique, or is not stable WE MUST CONSTRUCT IT!!

-Redefine solution with a priori information
-Stabilize the solution with regularization methods

IllIll­­posedposed problemsproblems
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ParametrizationParametrization

Parametrization involved will influence the way the inverse problem is posed and its solution.

If fewer parameters than field data…….OVERDETERMINED
If parameters > field data………………..UNDERDETERMINED
If parameters ~ field data………………..EVENLY DETERMINED

For computational simplicity, we use finite and minimum set of parameters

Distribution of physical properties is uniquely determined if measurements span the 
observational bandwidth [0 ∞]

But, due to technical limitations, field observations are contained in a finite observation 
interval, so field data is incomplete
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Linear problem:
Tx = y 

where T denotes a bounded linear operator acting between Hilbert spaces X
and Y .

Nonlinear problem:
F(x) = y

where F acts between two Hilbert spaces X and Y . The basic assumptions for a 
reasonable theory are that F is continuous and is weakly sequentially closed,
i.e., for any sequence 
imply that   and 

As opposed to the linear case, F is usually not explicitly given, but represents the 
operator describing the direct (also sometimes called ”forward”) problem.

Linear vs. Linear vs. NonlinearNonlinear inversioninversion problemsproblems

, ( )n nx X F x Y→ →

x D∈ ( )F x y=

Source:  Engl and Kugler, 

ex. Earth’s gravitational field

ex. Seismic tomography
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nF number of frequency samples

MisfitMisfit DefinitionDefinition

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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PossiblePossible shapesshapes forfor misfitmisfit functionfunction

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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Linear vs. Linear vs. NonlinearNonlinear inversioninversion problemsproblems

Source: Snieder, 1998
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Discrete models (finite number of degrees of freedom) vs. Continuous models (infinitely 
many degrees of freedom)

In many practical inverse problems, one aims to retrieve a model that has infinitely many 
degrees of freedom from a finite amount of data. It follows from a simple variable count 
that this cannot be done in a unique way.

For practical purposes, we model the problem as having a finite number of parameters 
(in geophysics, this is usually NOT true!!)

Discrete vs. Discrete vs. continuouscontinuous problemsproblems
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SimpleSimple Linear Linear RegressionRegression

Regression line:

{ }1 1 2 2( , ), ( , ),..., ( , )n nx y x y x y

i i i

y a bx
y a bx e
= +
= + +

n data pairs
vertical distance 

between ith data point 
and regression line

o

Least Squares Method

Minimize error such that we minimize:

2 2

1 1

( )
n n

i i i
i i

S e y abx
= =

= = −∑ ∑

y

x
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LeastLeast SquaresSquares MethodMethod
2 2

1 1

( )
n n

i i i
i i

S e y abx
= =

= = −∑ ∑Minimize:

0

0

S
a
S
b

∂
=

∂
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=
∂
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1

2( )( 1) 0

2( )( ) 0
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i i
i
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i i i
i

y a bx

y a bx x

=

=

− − − =

− − − =

∑

∑

1 1 1

2

1 1 1

n n n

i i
i i i
n n n

i i i i
i i i

a bx y

ax bx x y

= = =

= = =

+ =

+ =

∑ ∑ ∑

∑ ∑ ∑

( )22

n xy x y
b

n x x

−
=

−

∑ ∑ ∑
∑ ∑

Slope of fitted line:

y b x
a

n
−

= ∑ ∑

If more than 2 model parameters: MULTIPLE REGRESSION ANALYSIS

y

x
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Matrix Matrix FormulationFormulation
1

2

1 1

1

,

: ( ) ( ) ( ) )

0

2 2

[ ]

i
pn

i ij j
i j

d Gm m G d

d Gm e

Minimize d G m d GM d GM d d d Gm m G d m G Gm

d G G d G Gm m G G

G Gm G d

m G G G d

−

Τ Τ Τ Τ Τ Τ Τ

= =

Τ Τ Τ Τ Τ

Τ Τ

Τ − Τ

= =

= +

− = − − = − − +

= − − + + =

=

=

∑ ∑

Normal equations

For imperfect data!

For perfect data…

But, usually we have…
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FindingFinding inverseinverse

1[ ]m G G G dΤ − Τ= How do we solve for the inverse?

Examples:

-Cramer’s Rule
-Gauss Elimination Method
-Gauss-Jordan Elimination Method
-Lu or Triangular Decomposition Method
-Singular Value Decomposition

95



ConstrainedConstrained Linear Linear LeastLeast SquaresSquares InversionInversion

This is inversion with a priori information.

First, why do we add a priori information? 

Because it helps single out a unique solution out of the infinitely many plausible solutions to 
the problem if there are observational errors and uncertainties.
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ConstrainedConstrained Linear Linear LeastLeast SquaresSquares InversionInversion

2

2 2

2 2

2 2

2 1 2

( ) ( ) ( ) ( )

0

,2 2 2 2 0
( )

( )
( ) ( )

j

CONSTRAINED

Dm h
d Gm d Gm Dm h Dm h

Need
m

So G Gm G d D Dm D h
G G D D m G d D h

D I
G G I m G d h

m G G I G d h

φ β
φ

β β

β β

β β

β β

Τ Τ

Τ Τ Τ Τ

Τ Τ Τ Τ

Τ Τ

Τ − Τ

=

= − − + − −
∂

=
∂

− + − =

+ = +

=

+ = +

= + +

diagonal

We bias m toward h.

“Normal Equations”

is an auxiliary parameter, which chosen by trial and error. It is called the 
Lagrange multiplier.

β
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InversionInversion withwith SmoothnessSmoothness MeasuresMeasures

Question: Can a solution be stabilized if no prior estimate is available? Yes, inversion 
with smoothness measures.

This is another remedy for non-uniqueness… when in doubt, SMOOTH!!

Minimize (m1-m2), (m2-m3), (mp-mp-1)

1 -1
1  -1

……
1  -1

m1
m2
m3
…
mp

=

0
0
0
…
0

Also called the Marquardt damped solution.
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ErrorError AnalysisAnalysis –– ObservationObservation ErrorError

How do the experimental errors translate into errors in model estimates?

If we know the observational errors, we can incorporate them in the problem formulation
Hence, we will be getting a weighted solution

Usual assumption: Standard data errors σi are of a Gaussian distrubution with zero mean.

We essentially weigh each datum by its associated observational error:   
di
iσ
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UncertaintyUncertainty in in forwardforward modelmodel

Source: Tarantola, 2005
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AssessingAssessing the the qualityquality of the of the solutionsolution

Goodness-of-fit: the commonly used model acceptance criterion.  
Assumptions: di is normally distributed with known σi

Statistical parameter q

In practive, a model with is acceptable,

If q>> n the model underfits the data
If q<<n the model overfits the data (contains computed artifacts).

Root-Mean-Square

2

2
1

( )
, 1,

n
iobs ij j

i i

d G m
q j p

σ=

−
= =∑

2n p q n n− ≤ ≤ +

2

2
1

( )1 n
iobs ij j

i

d G m
RMS

n σ=

−
= ∑
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AssessingAssessing the the qualityquality of the of the solutionsolution ((contcont.).)

-Parameter Resolution Matrix R

1.Unconstrained solution:

R has dimension p x r where p are the parameters and r the number of non-zero eigenvalues
If R = I then each parameter is uniquely defined, and the resolution is perfect!

2.Marquardt damped solution (smoothing)

Solution is not perfect (R is not I)

3.Inversion with a priori data (constrained)

Constrained solution with a priori parameters has perfect resolution

1

1

{( ) }
( )

m G G G d
R HG G G G G I

Τ − Τ

Τ − Τ

=

= = =

1( ) G GR G G I G G I
I

β
β

Τ
Τ − Τ= + = +

2 1 2 1

2 1 2

( ) ( )
( ) ( )

R G G D D G G G G D D D D
G G D D G G D D I

β β β β

β β

Τ Τ − Τ Τ Τ − Τ

Τ Τ − Τ Τ

= + +

= + + =
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AssessingAssessing the the qualityquality of the of the solutionsolution ((contcont.).)

-Parameter Resolution Matrix R

Comment: Resolution matrix is only an experimental design guide. A perfect resolution does 
not imply an accurate or reliable model! In general, it is overstated in geophysical inversion 
literature.

If R=I this means the solution may be found

If R=I then true solution may not be found
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InversionInversion TechniquesTechniques

Forward problem:
Analytic or numerical processing
Only one solution

Inverse problem:
Trial and error to adjust parameters of the model
Simplex downhill method
Brute force uniform search (gridding)
Least square methods (based on derivatives)
Brute force Monte Carlo sampling
Simulated Annealing
Genetic Algorithm
Neighborhood Algorithm
Generally not only one solution

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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InversionInversion TechniquesTechniques

How do we search the model space:  Local vs. global search algorithms

Local search algorithms can be used on problems that can be formulated as finding a 
solution maximizing a criterion among a number of candidate solutions. Local search 
algorithms move from solution to solution in the space of candidate solutions (the 
search space) by applying local changes, until a solution deemed optimal is found or a 
time bound is elapsed.
Local algorithms result in ONE solution.
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InversionInversion TechniquesTechniques

How do we search the model space:  Local vs. global search algorithms

Global search algorithms sample a large portion of the model space, and detect
several local maxima. 

The strategy adopted in a global search method varies according to different
philosophies, some of which include genetic algorithms, fractal inversion, neural 
network inversion, enumerative methods, and Monte Carlo simulation. 

Global-search procedures are in general more expensive than local-search procedures, 
both in terms of time and computer resources. 

However, they are more robust and reliable compared to the latter.

Global search algorithms provide several solutions.
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A. A. UniformUniform searchsearch ((griddinggridding))

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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B. Iterative B. Iterative methodsmethods ((optimizationoptimization))
LeastLeast SquareSquare, Simplex, , Simplex, GradientGradient MethodsMethods......

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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C. C. RandomRandom SearchSearch (Monte Carlo)(Monte Carlo)

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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D. D. OrientedOriented randomrandom searchsearch
((SimulatedSimulated AnnealingAnnealing, , GeneticGenetic AlgorithmsAlgorithms, and , and NeighbourhoodNeighbourhood AlgorithmAlgorithm))

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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SolutionSolution of the Rayleigh Inverse of the Rayleigh Inverse ProblemProblem

medium parameters 
{ρ(z),V*p(z),V*s(z)}

dispersion and attenuation 
curves VR(ω) and αR(ω)

FORWARD

INVERSE

Well-posedness must observe three conditions (Tikhonov and Arsenin, 1977; Engl, 1993):
a. For all admissible data, a solution exists.
b. For all admissible data, the solution is unique. 
c. The solution depends continuously on the data. usually violated

linearnon-linear
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SolutionSolution of the Rayleigh Inverse of the Rayleigh Inverse ProblemProblem
Nonuniqueness either because lack of sufficient information to constrain solution OR information 
available may not be independent

Two remedies are a priori information, and smoothness and regularity
Simple for ideal error-free observation. More complex for data containing bias and random errors.

Source Lai et al., 1998
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Violation of continuity: solution is very sensitive to perturbations in the data

A stability analysis by means of singular-value expansion method (Menke, 1989; Engl, 
1993) shows the smallest singular value which controls amplification of the measurement 
errors. The rate of decay of the singular values arranged in order of decreasing magnitude 
is used as a measure to quantify the degree of instability of inverse problem.

For very unstable problems there are mathematical techniques, called regularization 
methods, that approximate the ill-posed problem with a parameter-dependent family of 
neighboring well-posed problems (Tikhonov and Arsenin, 1977; Engl, 1993). 

Because some of these regularization methods  can also be applied to non-linear inverse 
problems given that they admit a varriational formulation where the objective is the 
minimization of appropriate functionals.

SolutionSolution of the Rayleigh Inverse of the Rayleigh Inverse ProblemProblem

Source Lai et al., 1998
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CoupledCoupled vs. vs. UncoupledUncoupled AnalysisAnalysis
Coupled analysis 
(dispersion and the attenuation curves are inverted simultaneously)
Uncoupled analysis 
(curves are inverted separately)

Coupled analysis is more stable than uncoupled analysis! 

Also uncoupled analysis is restricted by the assumption of weak dissipation, 
whereas coupled is not!

Source Lai et al., 1998
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CoupledCoupled vs. vs. UncoupledUncoupled AnalysisAnalysis
Coupled analysis is more stable than uncoupled analysis! Why?

-In uncoupled inversion, the solution is not independent because errors from 
dispersion inversion carry over to attenuation inversion.

-In coupled no negative coupling effect because both sets of experimental 
data are inverted simultaneously in a single, complex-valued, inversion. 

-extra internal constraint that is embedded in the formalism of the complex 
inversion. The intimate connection between the real and the imaginary parts 
of the variables involved in the simultaneous inversion adds a built-in 
constraint that makes the coupled inversion a better-posed problem.

Source Lai et al., 1998
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Source Lai et al., 1998
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Source Lai et al., 1998
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Source Lai et al., 1998
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TwoTwo selectedselected algorithmsalgorithms: : 
OccamOccam’’s and s and NeighborhoodNeighborhood AlgorithmAlgorithm
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OccamOccam’’s s AlgorithmAlgorithm

-References: Constable et al., 1987; Parker, 1994

-Programmed into SWAN (http://www.geoastier.it/)

-Local search algorithm

-Summary: given a set of experimental data and their associated uncertainties, find the 
smoothest profile of model parameters subject to the constraint of a specified misfit 
between observed and predicted data. 

-The development of this class of algorithms was motivated by the following 
observations:
..The solution of a parameter identification problem relies on the ability to synthetically 
reproduce a set of experimental data by means of a mathematical model describing a 
particular physical problem. 
.. In discrete inverse theory, the mathematical model is assumed to depend on a
certain number of unknown model parameters, whose determination is the objective of 
the inversion algorithm.
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OccamOccam’’s s AlgorithmAlgorithm
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NeighborhoodNeighborhood AlgorithmAlgorithm

-References: Sambridge, 1999; Wathelet, 2008

-Programmed into geopsy (http://www.geopsy.org/

-Global search algorithm

-Search globally then refine search.

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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NeighborhoodNeighborhood AlgorithmAlgorithm

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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ConditionsConditions in in NeighborhoodNeighborhood AlgorithmAlgorithm

Source: Geopsy Inversion tutorial seminar, Thessaloniki, 2010 organized by LGIT, ITSAK, Universitat Postdam, IRD 
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Neighborhood Algorithm 2 Layer & H-S Model
Neighborhood Algorithm 3 Layer & H-S Model
Occam Algorithm 2 Layer & H-S Model
Occam Algorithm 3 Layer & H-S Model

StrategyStrategy: : WhyWhy notnot compare compare ifif wewe can?can?

Example: Hospital complex, Iseo, Italy.
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