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1-D wave propagation in unbounded
elastic homogeneous continua



Stress-strain relation (Hooke's law)

If small strain theory is adopted, stress-strain relation for a homogeneous, isotropic and linear 
elastic medium can be stated by making use of Hooke's law:

( )[ ]νσδ−σν+=ε ijijij 1
E
1

zyx σ+σ+σ=σ

in indicial notation:

in explicit form:

( )1
x x y z

uε = = σ ν σ +σ
x E

∂ ⎡ ⎤−⎣ ⎦∂

( )1
y y x z

vε = = σ ν σ +σ
y E

∂ ⎡ ⎤−⎣ ⎦∂

( )1
z z x y

wε = = σ ν σ +σ
z E

∂ ⎡ ⎤−⎣ ⎦∂

Lamé constants

)1(2
EG

ν+
=µ=

)21()1(
E

ν−ν+
ν

=λ



in indicial notation:

If                                                     is resolved in terms of stress components, then:( )[ ]νσδ−σν+=ε ijijij 1
E
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If a displacement field is assumed to have only one component such that s=[u(x,t),0,0]T , 
then the only non zero component of the strain tensor εij is  εx. such that:
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Stress-strain relation (Hooke's law)



Assuming only u(x,t) component, the equation of motion can be obtained as follows:

(from Faccioli, 2005)
density

Equations of motion
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1-D wave propagation equation

speed of propagation (depends on density and elastic moduli)

SOLUTION
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Equations of motion



Assuming the argument of f1(phase)    x - αt = const  ⇒ also  f1(x - αt) = const 

In order that the phase remains constant, if t is incremented of ∆t, x must increase of ∆x = α∆t, 
in fact:
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In other words, the displacement profile of f1(x - αt) represents a propagating perturbation 
which appears to be STATIONARY for an observer moving with constant velocity α along the 
+x axis. Therefore:

• α can be interpreted as the speed of propagation of the profile
• f1(x - αt) represents a wave propagating forward (along +x direction)
• f2(x + αt) is represents wave propagating backward (along -x direction)

1-D wave equation



Displacement profile of 1-D wave

(from Faccioli, 2005)In the propagation the signal moves without DISTORTION !

1-D wave equation



Parameter α (or VP) represents the velocity of propagation of longitudinal waves. Velocity of 
propagation should not be confused with ù(x,t) which represents the particle motion, which 
instead is a function of position and time instant under consideration.

The values of α in near-surface geological materials can be measured experimentally (as it will 
be shown later) by means of in situ and laboratory tests. Their range of variation is rather wide. 
At depths of few kilometers from the Earth surface the values of α are typically in the range of 
6.0 to 7.0 km/s.

(*) lower bound values for alluvial sediments are for dry geomaterials (above water table) (from Faccioli, 2005)

Geomaterials α or VP (km/s)
Alluvium  

(clays, silts, sands) 0.5 - 2.0(*)

Soft rock, dense gravel 2.0 - 3.0
Calcareous rock, dolomite 3.0 - 5.0

Crystalline rock 4.0 - 6.5

Longitudinal waves



Characteristics of P-waves

kka)  P-waves

kkdirection of
propagation

kkunperturbed
rock

kkdirection of particle
motion (vibrations)

Longitudinal waves



Consider now the case in which the elastic medium is excited by a dynamic perturbation that still 
propagates in the x direction, but gives rise to a displacement field that acts only in the y 
direction, and is independent from the y and z coordinates, namely s = [0, v(x,t), 0]T.

The derivation of the equation of motion that must be satisfied by v(x,t) is left as an easy but 
useful exercise (together with the demonstration that the shear stress τxy does not vary with y).
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Due to assumed displacement field, the only non-vanishing strain component is shear strain: 

yxxy τ=τ=τand thus    ⇒
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Transversal waves



(from Faccioli, 2005)

kk

Direction of propagation

Geomaterials β or Vs (m/s)
Very soft clays with high water content (e.g. Mexico City) 40-80

Normally consolidated clays and silts 150-300
Medium to very dense sands 200-400

Gravel 400-800
Soft rocks 500-1000

Fractured limestone 700-1500
Crystalline rocks 2500-3500

Transversal waves
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The relation between α (Vp) and β (Vs) may be combined together to get:

which shows that it is always β < α !

for ν = 0.25  ⇒ α = √ 3 β

In saturated porous media:
ν ---> 0.5  and  α ---> ∞ (incompressible medium)

β is a fundamental soil parameter in geotechnical 
earthquake engineering ! 

(from Faccioli, 2005)

Longitudinal and transversal waves



Harmonic waves and 
stationary oscillations



The elastic medium is subjected to a stationary oscillation or vibration, if the motion of each 
of its particles is proportional to some temporal function identical for all particles, and thus 
independent of x.
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When only the real part is considered:
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the most general STATIONARY oscillation can be constructed by superimposing two 
sinusoidal waves having opposite direction of propagation.

⇒ constructive and destructive interference

Stationary oscillations
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A = amplitude (any unit)

TEMPORAL PARAMETERS

• T = λ/α = period (sec)

• f = 1/T = α/λ = temporal frequency (Hz)

• ω = 2πf =2π/T = circular frequency (rad/s)

SPATIAL PARAMETERS

• λ = 2π/K  = wavelength (m)

• ν = 1/λ = spatial frequency, wavenumber (cycles/m) 

• K = 2π/λ = 2πν = ω/α = circular wavenumber (rad/m)

• α = velocity of propagation c = λ/Τ = ω/Κ = λf = f/ν (m/s)

harmonic wave

(from Faccioli, 2005)

Harmonic waves



Given two waves with same frequency propagating with the same speed in the same medium
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phase difference/phase shift

If ε = mπ (m is even) ⇒ phase shift is an even multiplier of λ
⇒ maxima of both waves coincide with each other

Two waves are IN PHASE

Two waves are OUT of PHASE

If ε = mπ (m is odd) ⇒ phase shift is an odd multiplier of λ
⇒ minima of one wave coincide with maxima of other

Monochromatic waves
Harmonic waves
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If both waves has the same amplitude A

Generic point oscillates in time with 
a sinusoidal law, without propagation 
of motion

The wavelength λ = 2π/K of the 
resulting oscillation coincides with 
that of the component waves

These characteristics of the 
stationary oscillation belong to what 
in mechanics is called a mode of 
vibration of a linear system

Nodes: points in which u = 0

Anti-nodes: points in which u=umax

Stationary oscillations
Harmonic waves

(from Faccioli, 2005)



Free surface effect
for normal incidence 



1D wave propagation in an elastic half-space
Free surface effect

ρ, β

Consider an incident wave propagating with a velocity c from 
+ ∞ toward the origin:
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Free surface effect for normal incidence
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⇒ doubling of displacement amplitude due to stress-free B.C. !

Free surface effect for normal incidence
1D wave propagation in an elastic half-space



Reflection and transmission
through a welded interface



Consider an incoming harmonic displacement 
S-wave with a unit amplitude propagating 
through an interface, which separates media 
1(ρ1,β1) and 2(ρ2,β2), with normal incidence. 

(ρ: is mass density, and β: shear wave velocity)

In such situation, total displacement in medium 1 will be given by two contributions: the 
incident wave (vi) plus the reflected (vr) wave. In medium 2 only contribution is that of the 
transmitted wave (vt) through the interface. These three waves may be written as follows:

incident wave:

reflected wave:

transmitted wave:

Propagating in medium 1

Propagating in medium 1

Propagating in medium 2

Reflection and transmission coefficients



Boundary conditions (i) and (ii) yield:

where

i) continuity of displacement

Reflection and transmission coefficients are determined by the continuity conditions at 
the interface between the two media:

ii) continuity of stress

namely impedance ratio

x2 = 0

Reflection and transmission coefficients



Dependence of reflection and transmission coefficients to impedance ratio is illustrated below:

rigid end (base) condition:
(impedance ratio = ∞)

cr=-1

ct=0

free end (surface) condition:
(impedance ratio = 0)

cr=1

ct=2

impedance ratio

Reflection and transmission coefficients 

(from Faccioli, 2005)
SPECIAL CASES:

Reflection and transmission coefficients



Medium 1 Medium 2

distance (km)

Illustration of reflection and transmission phenomena in spatial domain:

Reflection and transmission coefficients



Propagation in viscoelastic medium



Assumption:
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Linear viscoelastic constitutive model



Internal damping factor
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Wave with forward 
propagation

Wave with backward 
propagation

Linear viscoelastic constitutive model



Q cost=• Hysteretic damping; Factor of attenuation proportional to frequency
2

x
Q
ω

β

Higher damping at higher frequencies

1Q−
linearly increase with frequency• Viscous damping; factor of attenuation 

dependence from 2ω

Highlighted damping

Previous formulation is valid only for sinusoidal stationary motion with a fixed frequency

!

Linear viscoelastic constitutive model



Propagation of waves in elastic 
inhomogeneous continua



Reflection and refractions of a P 
seismic wave at the interface 
between two different rock 
formations.

Paths of seismic waves which 
are reflected and refracted by 
interfaces of various geological 
formations within the earth crust.

(from Bruce A. Bolt, Nuclear 
Explosions and Earthquakes, W. H. 
Freeman, San Francisco, 1976)

Reflection and transmission for arbitrary incidence



Body waves influence of medium heterogeneity

• Discontinuous variability

• Continuous variability

layer 1

layer 2

layer 3

VS(z)∈C0

P P1

SV1

P2

SV2

Curved
Rays

i

( )
( )

sin i
p

V z
= Snell’s law

Reflection and transmission for arbitrary incidence



Body waves in elastic (isotropic) media are of two different types:

P-waves

S-waves

S-waves are of two different kind according to the direction of particle motion:

SV-wave: displacement amplitude is oriented parallel to plane [x, z]

SH-wave: displacement amplitude is oriented normal to plane [x, z]   

P-wave SV-wave SH-wave

direction of particle motion

direction of propagation
x

z

Reflection and transmission for arbitrary incidence
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Polarisation of the transversal particle motion into the SV and SH components

(from Faccioli, 2005)

Reflection and transmission for arbitrary incidence



When body waves are impinging at an interface with an arbitrary angle of incidence, according 
to their polarization (orientation of particle motion) they give rise to:

P-waves: generate reflected and transmitted P and SV-waves (mode conversion)
S-waves:

SV-waves: generate reflected and transmitted P and SV-waves (mode conversion)
SH-waves: generate reflected and transmitted SH-waves
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Snell’s law

Reflection and transmission for arbitrary incidence



Suppose a soil deposit where:

• layers are oriented horizontally

• stiffer layers are overlaid by softer layers (i.e. βi+1<βi)

β1, ρ1

β2, ρ2

β3, ρ3

β4, ρ4

• incidence angle gets smaller at each
interface level !

• transmitted waves get more vertical !

This situation is valid also for seismic 
wave propagation in deep earth layers !

⇒ normal incidence is a reasonable assumption in 1D soil modeling !

Reflection and transmission for arbitrary incidence



When does a wave cannot be transmitted through an interface ?

β1, ρ1

β2, ρ2

ic

(SH) (SH)

(SH)

For SH-waves

For incident angles greater than ic, no transmitted 
SH-waves are generated !

Similar conclusions may also be drawn for
2-D P-SV propagation.

SH-WAVES
Reflection and transmission for arbitrary incidence
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Reflection and transmission for arbitrary incidence



Surface Rayleigh waves



Relevance of surface waves in science and technology

• Discovered by Rayleigh in 1887, have attracted an increasing interest in:

• Solid-state physics
• Microwave engineering
• Geophysical prospecting
• Geotechnical engineering
• Non-destructive testing
• Seismological studies
• Material science
• Ultrasonic acoustics
• …. 

near fieldsurface Rayleigh waves

particle orbit

direction of propagation



Why surface waves are appealing ?

• Small scale ⇒ ultrasonic surface waves can identify material defects

• Large scale ⇒ seismologists use surface waves to investigate Earth’s structure

• Intermediate scale ⇒ geophysicists use surface waves for site-characterization

• They are ideal for developing non-invasive techniques for material
• characterization  ⇒ solution of parameter-identification problems:

????



• Some properties of surface waves which make them particularly
• suitable for material characterization:

• They originate from condition of vanishing stress at the boundary of a domain
• They radiation pattern is two-dimensional ⇒ lesser rate of geometric attenuation
• In direction orthogonal to propagation displacement field decays exponentially
• Most strain energy is confined within a depth of a wavelength from free-surface

(from Woods, 1968)

mechanical waves generated by a 
vertical harmonic oscillator

Why surface waves are appealing ?



• Some properties of surface waves which make them particularly suitable for 
material characterization:

Layer 1

Layer 2

Layer 3

λshort

λlong

Depth

Vertical

Displacement

Vertical

Displacement

Depth

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

λshort

λlong

Depth

Vertical

Displacement

Vertical

Displacement

Depth

Why surface waves are appealing ?

• In homogeneous media surface 
waves are non-dispersive

• In heterogeneous media surface 
waves are dispersive that is waves 
of different wavelength will travel 
at different speeds

• geometric dispersion can be used 
for material characterization
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Why surface waves are appealing ?



• Some properties of surface waves which make them particularly
• suitable for material characterization:

geometric dispersion
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Why surface waves are appealing ?



ReceiversSource

Recording
Device

Vertical
Particle
Motion

• Signal detection and elaboration

• Inversion of experimental curves VR(w)
& aR(w) to obtain VS(y) & DS(y)

General features:

• Construction of experimental 
dispersion & attenuation curves

Acronyms:   SSRM,  SASW,  CS-SASW, 
CSWS, MASW,  SWM, ...

• Use these properties for development and setup of non-invasive testing 
• for material and site characterization:

• Generation of surface waves

Why surface waves are appealing ?



Rayleigh dispersion equation 
in homogeneous continua
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substituting                                   the propagation velocity of Rayleigh 
waves, function of the Poisson ratio:
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Displacement field of Rayleigh waves
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• Rearranging, the secular equation becomes:

016)21(88 23 =−++− rxrxx

it reduces to a cubic equation admitting a closed form solution for    : Rc
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one admissible solution for        , being two roots extraneous, arising 
from the rationalization process of squaring

Approximate solution: TR cc
ν+

ν+
=

1
14.1862.0

5.00 <ν<• Since

TRT ccc 955.0862.0 <<

)(νRc

Rc independent on the frequency NOT DISPERSIVE waves

Displacement field of Rayleigh waves
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Displacement field of Rayleigh waves



Displacement field of Rayleigh waves



Love waves



• They are confined at the free-surface 
of the earth crust ⇒ surface waves.

• They cause lateral shaking of the 
ground (horizontally polarized shear 
SH waves);

• Their velocity of propagation is 
slightly less that the phase velocity of 
SH waves; 

• They exist only if the contrast of 
mechanical impedance of top layer 
with respect to half space obey 
certain rules.

Love waves



Love waves

Rayleigh waves

Rayleigh and Love waves
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Rayleigh and Love waves



Reflection and transmission 
for arbitrary incidence 

(more details)



Fermat's principle or “principle of least time”:

Principle in physics/optics stating that a mechanical or ELM ray takes the shortest path
(therefore the shortest time) while travelling from point A to point B of a medium

In presence of an interface:

According to Fermat's principle, total distance travelled by 
the ray must be minimized. In mathematical notation:

V1 is different from V2

B

A

θ2

θ1

V2

V1
Y

x

y1 L1

L2

X

y2

Reflection and transmission for arbitrary incidence

Snell's law!



Snell's lawWhen incident SH-waves are impinging at an interface, they reflect 
and transmit through the boundary as SH-waves with angles 
obeying at Snell's law

Number of unknowns: 2 (D, F)

Number of equations:  1 continuity of displacement 
1 continuity of stress [rb2d(w)/dy]

Corresponding angles are found by applying Snell's law

@ interface

f

e

F

g = e

DB

β1, ρ1

(SH)

(SH)(SH)

β2, ρ2

x1,y1

x2,y2

Zoeppritz equations

Reflection and transmission for arbitrary incidence



When incident P-waves are impinging at an interface, 4 
resulting waves are generated:

• 2 P-waves (one reflected, one transmitted) 

• 2 SV-waves (one reflected, one transmitted)

Number of unknowns: 4 (C, D, E, F)

Number of equations: 2 continuity of displacement
2 continuity of stress (normal and shear stress)

Corresponding angles are found by applying Snell's law:

@ interface

e

a

E

c = a

CA

(P)

(P)(P)

α2,,β2, ρ2

x1,y1

x2,y2

α1,,β1, ρ1

F (SV)

f

D (SV
)

d

(from Richarts et al., 1970)

Reflection and transmission for arbitrary incidence
Snell's law



When incident SV-waves are impinging at an interface, 4 
resulting waves are generated:

• 2 P-waves (one reflected, one transmitted) 

• 2 SV-waves (one reflected, one transmitted)
Number of unknowns: 4 (C, D, E, F)

Number of equations: 2 continuity of displacement
2 continuity of stress (normal and shear stress)

Corresponding angles are found by applying Snell's Law

@ interface

e

b

E

d = b

DB

(P)

(SV)(SV)

α2,,β2, ρ2

x1,y1

x2,y2

α1,,β1, ρ1

F (SV)

f

C (P)
c

(from Richarts et al., 1970)

Reflection and transmission for arbitrary incidence
Snell's law



Amplitud
e

Angle
Incident P A a

Incident SV B b
Reflected P C c

Reflected SV D d
Transmitted P E e

Transmitted SV F f

P-WAVES

(from Richarts et al., 1970)

Reflection and transmission for arbitrary incidence



Amplitud
e

Angle
Incident P A a

Incident SV B b
Reflected P C c

Reflected SV D d
Transmitted P E e

Transmitted SV F f

SV-WAVES

(from Richarts et al., 1970)

dashed line above indicate 
evanescent waves !

Reflection and transmission for arbitrary incidence


