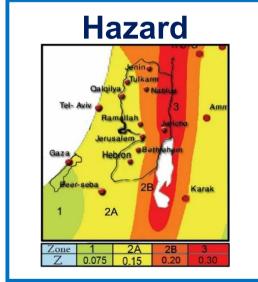


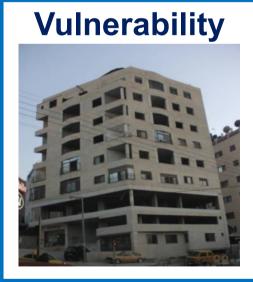
Support Action for Strengthening PAlestine capabilities for seismic Risk Mitigation SASPARM 2.0

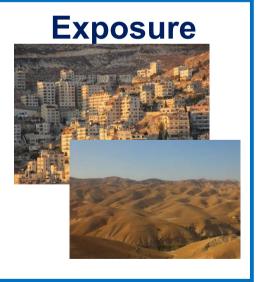
2014 PROJECT FOR CIVIL PROTECTION FINANCIAL INSTRUMENT PREPAREDNESS AND PREVENTION SCHEME

TAXONOMY PRESENTATION

Name e-mail






Project goal

SEISMIC RISK

Vulnerability

Data collection necessary to:

- ✓ Elaborate vulnerability functions;
- ✓ Assign vulnerability function to each building typology.

Creation of a reasonable **TAXONOMY** able to classify all the different kinds of structures.

Taxonomy

Buildings vary around the world, but they have a common set of characteristics.

Taxonomy

Some existing typologies aim to group different building types spread in different countries of the world:

- ✓ PAGER-STR (Jaiswal and Wald 2008, global)
- ✓ RISK-UE (2001-2004, for Europe)
- ✓ SYNER-G (2011, for Europe)

PAGER – STR Taxonomy

3 phases:

- ✓ Database identification, preparation and confidence ratio to estimate quality of data;
- ✓ Data aggregation and quality ranking;
- ✓ Data assignment for missing entries.

PAGER – STR Taxonomy

√ 15 classes are defined with relative and more detailed

subclasses

LABEL	DESCRIPTION		
w	Wood		
W1	Wood frame, wood stud, wood, stucco, or brick veneer		
W2	Wood frame, heavy members, diagonals or bamboo lattice, mud infill		
W3	Wood frame, prefabricated steel stud panels, wood or stucco exterior walls		
W4	Log building		
S	Steel		
S1	Steel moment frame ^a		
S2	Steel braced frame ^a		
S3	Steel light frame		
S4	Steel frame with cast-in-place concrete shear walls		
S5	Steel frame with unreinforced masonry infill walls		
C	Reinforced Concrete		
C1	Ductile reinforced concrete moment frame ^a		
C2	Reinforced concrete shear walls ^a		
C3	Nonductile reinforced concrete frame with masonry infill walls ^a		
C4	Nonductile reinforced concrete frame without masonry infill walls ^a		
C5	Steel reinforced concrete (steel members encased in reinforced concrete)a		
PC1	Precast concrete tilt-up walls (low rise)		
PC2	Precast concrete frames with concrete shear walls ^a		
TU	Precast wall panel construction (mid to high rise, former Soviet Union style		
RM	Reinforced Masonry		
RM1	Reinforced masonry bearing walls with wood or metal deck diaphragms ^b		
RM2	Reinforced masonry bearing walls with concrete diaphragms ^a		
МН	Mobile Homes		
M	Mud Walls		
M1	Mud walls without horizontal wood elements		
M2	Mud walls with horizontal wood elements		

LABEL	DESCRIPTION	
A	Adobe Block (Unbaked Dried Mud Block) Walls	
A1	Adobe block, mud mortar, wood roof and floors	
A2	Same as A1, bamboo, straw, and thatch roof	
A3	Same as A1, cement-sand mortar	
A4	Same as A1, reinforced concrete bond beam, cane and mud roof	
A5	Same as A1, with bamboo or rope reinforcement	
RE	Rammed Earth/Pneumatically Impacted Stabilized Earth	
RS	Rubble Stone (Field Stone) Masonry	
RS1	Local field stones dry stacked (no mortar). Timber floors. Timber, earth, or metal roof.	
RS2	Same as RS1 with mud mortar.	
RS3	Same as RS1 with lime mortar.	
RS4	Same as RS1 with cement mortar, vaulted brick roof and floors	
RS5	Same as RS1 with cement mortar and reinforced concrete bond beam.	
DS	Rectangular Cut Stone Masonry Block	
DS1	Rectangular cut stone masonry block with mud mortar, timber roof and floors	
DS2	Same as DS1 with lime mortar	
DS3	Same as DS1 with cement mortar	
DS4	Same as DS2 with reinforced concrete floors and roof	
UFB	Unreinforced Fired (baked)Brick Masonry	
UFB1	Unreinforced brick masonry in mud mortar without timber posts	
UFB2	Unreinforced brick masonry in mud mortar with timber posts	
UFB3	Unreinforced fired brick masonry, cement mortar, timber or timber-and-steel gravity system	
UFB4	Same as UFB3, but with reinforced concrete floor and roof slabs	
UCB	Unreinforced Concrete Block Masonry, Lime/Cement Mortar	
MS	Massive Stone Masonry in Lime/Cement Mortar	
INF	Informal Construction (makeshift dwellings, made from plastic/GI sheets or other material)	
UNK	Unknown (Not specified)	

PAGER – STR Taxonomy

- ✓ Simple and collapsible;
- ✓ Capture most of the key structural aspects that affect seismic performance;
- ✓ International coverage: variety of structural types found outside the more developed countries;
- ✓ Difficulty in extending it (if necessary to be more specific, # possible structural types increases rapidly, making taxonomy unmanageable).

RISK – UE Taxonomy

- ✓ Assessment of earthquake scenarios at city-scale within European context (application in 7 European cities);
- ✓ Implementation of Risk Management Plans and Plans of Action;
- ✓ Modular methodology comprised of different work packages.

RISK – UE Taxonomy

- √ 23 classes defined grouped by structural types and material;
- √ 3 different height classes represent further sub-groups.

Label	Description	Rise	Average No. o stories
M11L		Low-rise	1-2
M11M	Rubble Stone, fieldstone	Mid-Rise	3-5
M12L		Low-rise	1-2
M12M	Simple Stone	Mid-Rise	3-5
M12H		High-rise	6+
M13L		Low-rise	1-2
M13M	Massive Stone	Mid-Rise	3-5
M13H		High-rise	6+
M2L	Adobe	Low-Rise	1-2
M31L		Low-rise	1-2
M31M	Wooden slabs URM	Mid-Rise	3-5
M31H		High-rise	6+
M32L		Low-rise	1-2
M32M	Masonry vaults URM	Mid-Rise	3-5
M32H		High-rise	6+
M33L		Low-rise	1-2
МЗЗМ	Composite slabs URM	Mid-Rise	3-5
МЗЗН		High-rise	6+
M34L		Low-rise	1-2
M34M	RC slabs URM	Mid-Rise	3-5
M34H		High-rise	6+
M4L	Reinforced or confined masonry	Low-rise	1-2

Label	Description	Rise	Average No. o stories
M4M		Mid-Rise	3-5
м4Н		High-rise	6+
M5L		Low-rise	1-2
M5M	Overall strengthened masonry	Mid-Rise	3-5
м5Н		High-rise	6+
RC1L		Low-rise	1-2
RC1M	RC moment frames	Mid-Rise	3-5
RC1H		High-rise	6+
RC2L		Low-rise	1-2
RC2M	RC shear walls	Mid-Rise	3-5
RC2H		High-rise	6+
RC31L		Low-rise	1-2
RC31M	Regularly infilled RC frames	Mid-Rise	3-5
RC31H		High-rise	6+
RC32L		Low-rise	1-2
RC32M	Irregular RC frames	Mid-Rise	3-5
RC32H		High-rise	6+
RC4L		Low-rise	1-2
RC4M	RC dual systems	Mid-Rise	3-5
RC4H	SECURIOR DE PETROPOS ADMINISTRAÇÃO	High-rise	6+
RC5L		Low-rise	1-2
RC5M	Precast concrete tilt-up walls	Mid-Rise	3-5
RC5H		High-rise	6+

RISK – UE Taxonomy

- ✓ Methodology to collect and classify buildings and earthquake data for urban seismic risk assessment in Europe;
- ✓ Completion of European manual for implementing earthquake scenarios, taking into account distinctive European features;
- ✓ Takes into account main structural typologies, but not other non-engineered buildings.

SYNER-G Taxonomy

- ✓ Built to classify European buildings and to overcome problems of other existing taxonomies;
- ✓ Modular structure in order to add categories, sub-categories and further categories for describing non-structural elements.

SYNER-G Taxonomy

√ 10 classes and respective sub-classes;

CATEGORY	SUB-CATEGORY Force Resisting Mechanism (FRM2) • Embedded beams (EB) • Emergent beams (EGB)		
Force Resisting Mechanism (FRM1) Moment Resisting Frame (MRF) Structural Wall (W) Flat Slab (FS) Bearing Walls (BW) Precast (P) Confined Masonry (CM)			
FRM Material (FRMM1) Concrete (C)	FRM Material (FRMM2) Reinforced Concrete (RC)		
Masonry (M)	Unreinforced Masonry (URM) Reinforced Masonry (RM) High strength concrete (>50MPa) (HSC) Average strength concrete (20-50 MPa) (ASC) Low strength concrete (<20 MPa) (LSC) Adobe (A) Fired brick (FB) Hollow clay tile (HC) Stone (S) High yield strength reinforcing bars (>300MPa) (HY) Low yield strength reinforcing bars (<300MPa) (LY) Classification of reinforcing bars based or EC2 (A,B,C) Lime mortar (LM) Cement mortar (CM) Mud mortar (MM) Smooth rebars (SB) Non-smooth rebars Concrete Masonry Unit (CMU) Autoclaved Aerated Concrete (AAC) High % of voids (H%)		
Plan (P)	Low % of voids (L%) Regular Cut (Rc) Rubble (Ru)		

CATEGORY	SUB-CATEGORY
Elevation (E) Regular geometry (R) Irregular geometry (IR)	
Cladding (C) Regular infill vertically (RI) Irregular infill vertically (IRI) Bare (B)	Cladding Characteristics (CM) Fired brick masonry (FB) High % voids (H%) Low % voids (L%) Autoclaved Aerated Concrete (AAC) Precast concrete (PC) Glazing (G) Single layer of cladding (SL) Double layer of cladding (DL) Open first floor (Pilotis) (P) Open upper floor (U)
Detailing (D) Ductile (D)	4 5 SECONDESION NO.
Non-ductile (ND) With tie rods/beams (WTB) Without tie rods/beams (WoTB)	
Floor System (FS) Rigid (R) Flexible (F)	Floor System Material (FSM) Reinforced concrete (RC) Steel (S) Timber (T)
Roof System (RS) Peaked (P) Flat (F) Gable End Walls (G)	Roof System Material (RSM) Timber (Ti) Thatch (Th) Corrugated Metal Sheet (CMS)
Height Level (HL) • Low-rise (1-3) (L)	Number of stories (NS) [Here the number of stories is explicitly give if known]

 Low (<0.1g) (LC) Moderate (0.1-0.3g) (MC)

High (>0.3g) (HC)

SYNER-G Taxonomy

- ✓ Not-hierarchical taxonomy and possibility of increase to capture all the vulnerabilities;
- ✓ Potentiality to treat non-buildings because of the way it is structured;
- ✓ Potentiality for greatest degree of completeness and most flexibility.

Building Typologies

First step for large scale vulnerability assessment:

Identification of

Assessment of seismic

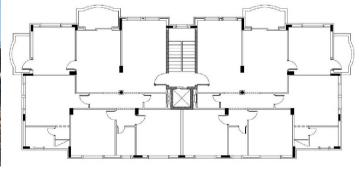
building types

vulnerability for each type

- 4 building types in Nablus:
- ✓ Reinforced concrete frame buildings;
- ✓ Shear wall buildings;
- ✓ Masonry buildings;
- ✓ Buildings with soft storey.

Residential: 2÷3 bays in x,y directions;

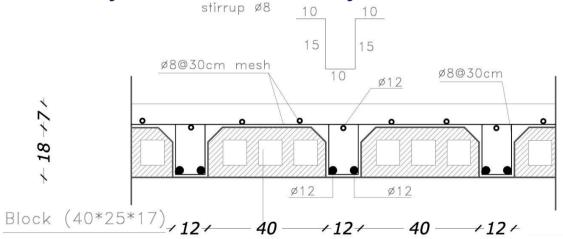
up to 15 floors.


Structure: in-situ casted reinforce concrete slabs; reinforced concrete beams and columns;

Exterior Walls: masonry made of 3 layers; hollow concrete blocks.

2 slab typologies:

✓ Ribbed with hidden beams: one-way or two way ribbed slabs with hollow concrete blocks (140-320 × 200 × 400mm)


Dimensions: 100-200 × 200-500mm

Beams usually hidden within thickness.

Interstorey h: 3.0 ÷ 3.5m

Width of bays: 4 ÷ 6 m in x,y directions

2 slab typologies:

✓ Solid with drop beams: one-way or two-way.

Thickness: 150 ÷ 300mm

Beams depth: 400 ÷ 800mm (allowing large spans for slab panels 6 ÷ 8m in x,y)

Interstorey h: 2.8 ÷ 5m

Use: car parking garages and commercial bld

2 walls typologies:

✓ Masonry walls made of 3 layers:

Hollow concrete blocks (100mm);

Weak concrete (130mm);

Stone layer (70mm)

√ Hollow concrete blocks: 150 ÷200mm

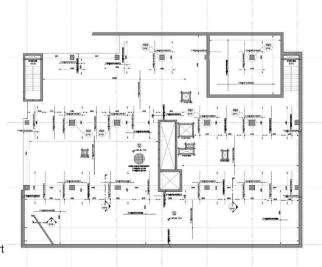
Shear Wall Buildings

Residential: 3 ÷ 5 bays in each direction;

 $5 \div 20$ floors.

Structure: reinforced concrete walls for lateral and

vertical support;


possible interior reinforced concrete columns

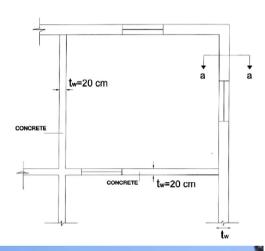
(gravity loads);

Exterior Walls: masonry stones.

Shear Wall Buildings

Exterior Walls: cladded with masonry stones giving the

appearance of masonry building.


Masonry Buildings

Residential: 1- 2 bays in each direction;

2 - 3 floors.

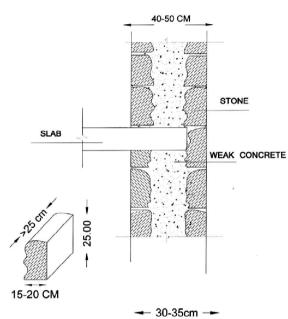
Structure: masonry walls;

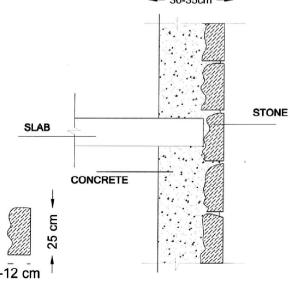
reinforced concrete slabs.

SASPARM 2.0

Masonry Buildings

2 wall categories:


✓ Two layers of masonry stones with concrete in between;


thickness: 400 ÷ 500mm;

Masonry cladded row-by-row and concrete is cast behind them via suitable formwork;

thickness: up to 350mm.

Masonry Buildings

2 kind of slabs:

✓ Two-way solid slab:

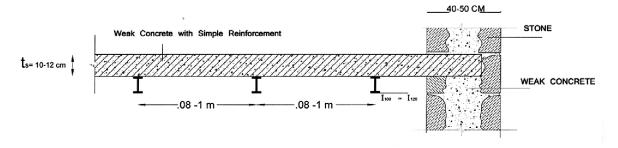
thickness: 200 ÷ 250mm

span: 4 - 5m;

40-50 CM

STONE

WEAK CONCRETE


R.C Slab (Tow ways Solid Slab)

✓ Steel concrete slab:

thickness: 100 ÷ 120mm;

span: 5-7m;

Buildings with soft story

Residential

Structure: shear wall system or

reinforced concrete frame system.

Missing infill walls everywhere or in part of floors

Reduced stiffness and eccentricity problems

Thank you for your attention!

